Open Access
Issue |
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
|
|
---|---|---|
Article Number | 01046 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/bioconf/202411701046 | |
Published online | 05 July 2024 |
- K. B. Fuller, J. M. Alston, & O. S. Sambucci, The value of powdery mildew resistance in grapes: Evidence from California. Wine Economics and Policy, 3 (2014) 90-107. https://doi.org/10.1016/j.wep.2014.09.001. [CrossRef] [Google Scholar]
- Q. Liu, G. Y. Tang, C. N. Zhao, X. L. Feng, X. Y. Xu, S. Y. Cao, X. Meng, S. Li, R. Y. Gan, & H. Bin Li, Comparison of antioxidant activities of different grape varieties. Molecules, 23 (2018). https://doi.org/10.3390/molecules23102432. [Google Scholar]
- K. P. Seng, L. M. Ang, L. M. Schmidtke, & S. Y. Rogiers, Computer vision and machine learning for viticulture technology. IEEE Access, 6 (2018) 67494-67510. https://doi.org/10.1109/ACCESS.2018.2875862. [CrossRef] [Google Scholar]
- Q. Deng, H. Xia, L. Lin, J. Wang, L. Yuan, K. Li, J. Zhang, X. Lv, & D. Liang, SUNRED, a natural extract-based biostimulant, application stimulates anthocyanin production in the skins of grapes. Scientific Reports, 9 (2019). https://doi.org/10.1038/s41598-019-39455-0. [Google Scholar]
- Z. Gao, L. R. Khot, R. A. Naidu, & Q. Zhang, Early detection of grapevine leafroll disease in a red-berried wine grape cultivar using hyperspectral imaging. Computers and Electronics in Agriculture, 179 (2020). https://doi.org/10.1016/j.compag.2020.105807. [Google Scholar]
- M. A. Alajrami & S. S. Abu-Naser, Grapes Expert System Diagnosis and Treatment. [Google Scholar]
- A. Adeel, M. A. Khan, M. Sharif, F. Azam, J. H. Shah, T. Umer, & S. Wan, Diagnosis and recognition of grape leaf diseases: An automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion. Sustainable Computing: Informatics and Systems, 24 (2019). https://doi.org/10.1016/j.suscom.2019.08.002. [Google Scholar]
- T. Dewi, R. Rusdianasari, R. D. Kusumanto, & S. Siproni, Image Processing Application on Automatic Fruit Detection for Agriculture Industry (2022). [Google Scholar]
- N. R. Kolhalkar & V. L. Krishnan, Mechatronics system for diagnosis and treatment of major diseases in grape vineyards based on image processing. Mater Today Proc (Elsevier Ltd, 2020), pp. 549-556. https://doi.org/10.1016/j.matpr.2019.05.407. [Google Scholar]
- Z. Tang, J. Yang, Z. Li, & F. Qi, Grape disease image classification based on lightweight convolution neural networks and channelwise attention. Computers and Electronics in Agriculture, 178 (2020). https://doi.org/10.1016/j.compag.2020.105735. [PubMed] [Google Scholar]
- X. Sun, G. Li, P. Qu, X. Xie, X. Pan, & W. Zhang, Research on plant disease identification based on CNN. Cognitive Robotics, 2 (2022) 155-163. https://doi.org/10.1016/j.cogr.2022.07.001. [CrossRef] [Google Scholar]
- Τ. Kalampokas, Ε. Vrochidou, G. A. Papakostas, T. Pachidis, & V. G. Kaburlasos, Grape stem detection using regression convolutional neural networks. Computers and Electronics in Agriculture, 186 (2021). https://doi.org/10.1016/j.compag.2021.106220. [CrossRef] [Google Scholar]
- H. Cecotti, A. Rivera, M. Farhadloo, & M. A. Pedroza, Grape detection with convolutional neural networks. Expert Systems with Applications, 159 (2020). https://doi.org/10.1016/j.eswa.2020.113588. [CrossRef] [Google Scholar]
- U. Sanath Rao, R. Swathi, V. Sanjana, L. Arpitha, K. Chandrasekhar Chinmayi, & P.K. Naik, Deep Learning Precision Farming: Grapes and Mango Leaf Disease Detection by Transfer Learning. Global Transitions Proceedings, 2 (2021) 535-544. https://doi.org/10.1016/j.gltp.2021.08.002. [CrossRef] [Google Scholar]
- K. Ashokkumar, S. Parthasarathy, S. Nandhini, & K. Ananthajothi, Prediction of grape leaf through digital image using FRCNN. Measurement: Sensors, 24 (2022). https://doi.org/10.1016/j.measen.2022.100447. [CrossRef] [Google Scholar]
- S. M. Javidan, A. Banakar, K. A. Vakilian, & Y. Ampatzidis, Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology, 3 (2023) 100081. https://doi.org/10.1016/j.atech.2022.100081. [CrossRef] [Google Scholar]
- K. Sanghavi, M. Sanghavi, & A. M. Rajurkar, Early stage detection of Downey and Powdery Mildew grape disease using atmospheric parameters through sensor nodes. Artificial Intelligence in Agriculture, 5 (2021) 223-232. https://doi.org/10.1016/j.aiia.2021.10.001. [CrossRef] [Google Scholar]
- X. Lu, R. Yang, J. Zhou, J. Jiao, F. Liu, Y. Liu, B. Su, & P. Gu, A hybrid model of ghost-convolution enlightened transformer for effective diagnosis of grape leaf disease and pest. Journal of King Saud University -Computer and Information Sciences, 34 (2022) 1755-1767. https://doi.org/10.1016/j.jksuci.2022.03.006. [CrossRef] [Google Scholar]
- S. Yu, L. Xie, & Q. Huang, Inception convolutional vision transformers for plant disease identification. Internet of Things (Netherlands), 21 (2023). https://doi.org/10.1016/j.iot.2022.100650. [Google Scholar]
- M. Ji, L. Zhang, & Q. Wu, Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks. Information Processing in Agriculture, 7 (2020) 418-426. https://doi.org/10.1016/j.inpa.2019.10.003. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.