Open Access
Issue |
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
|
|
---|---|---|
Article Number | 01047 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/bioconf/202411701047 | |
Published online | 05 July 2024 |
- D. P. Snustad & M. J. Simmons, Principles of genetics, 7th ed (Wiley, 2015). [Google Scholar]
- M. Nehra, R. K. Sharma, & M. Choudhary, An overview on molecular basis of genetic recombination. International Journal of Current Microbiology and Applied Sciences, 6 (2017) 1154-1167. https://doi.org/10.20546/ijcmas.2017.604.142. [Google Scholar]
- E. Bolcun-Filas & M. A. Handel, Meiosis: the chromosomal foundation of reproduction. Biology of Reproduction, 99 (2018) 112-126. https://doi.org/10.1093/biolre/ioy021. [CrossRef] [PubMed] [Google Scholar]
- O. Fang, L. Wang, Y. Zhang, J. Yang, Q. Tao, F. Zhang, & Z. Luo, Genome duplication increases meiotic recombination frequency: A Saccharomyces cerevisiae model. Molecular Biology and Evolution, 38 (2021) 777-787. https://doi.org/10.1093/molbev/msaa219. [CrossRef] [PubMed] [Google Scholar]
- C. Liu, Y. Cao, Y. Hua, G. Du, Q. Liu, X. Wei, T. Sun, J. Lin, M. Wu, Z. Cheng, & K. Wang, Concurrent disruption of genetic interference and increase of genetic recombination frequency in hybrid rice using CRISPR/Cas9. Frontiers in Plant Science, 12 (2021). https://doi.org/10.3389/fpls.2021.757152. [Google Scholar]
- T.P. Mendonça, J. Davi de Aquino, W. Junio da Silva, D.R. Mendes, C.F. Campos, J.S. Vieira, N.P. Barbosa, M.P. Carvalho Naves, E. Olegário de Campos Júnior, A.A. Alves de Rezende, M.A. Spanó, A.M. Bonetti, V.S. Vieira Santos, B.B. Pereira, & C. Resende de Morais, Genotoxic and mutagenic assessment of spinosad using bioassays with Tradescantia pallida and Drosophila melanogaster. Chemosphere, 222 (2019) 503-510. https://doi.org/10.1016/j.chemosphere.2019.01.182. [CrossRef] [PubMed] [Google Scholar]
- C. R. de Morais, S. M. Carvalho, M. P. Carvalho Naves, G. Araujo, A. A. A. de Rezende, A. M. Bonetti, & M. A. Spanó, Mutagenic, recombinogenic and carcinogenic potential of thiamethoxam insecticide and formulated product in somatic cells of Drosophila melanogaster. Chemosphere, 187 (2017) 163-172. https://doi.org/10.1016/j.chemosphere.2017.08.108. [CrossRef] [PubMed] [Google Scholar]
- L. Krejci, V. Altmannova, M. Spirek, & X. Zhao, Homologous recombination and its regulation. Nucleic Acids Research, 40 (2012) 5795-5818. https://doi.org/10.1093/nar/gks270. [Google Scholar]
- M. M. Brady, S. McMahan, & J. Sekelsky, Loss of Drosophila Mei-41/ATR alters meiotic crossover patterning. Genetics, 208 (2018) 579-588. https://doi.org/10.1534/genetics.117.300634. [CrossRef] [PubMed] [Google Scholar]
- Z. Chen, F. Wang, D. Wen, & R. Mu, Exposure to bisphenol A induced oxidative stress, cell death and impaired epithelial homeostasis in the adult Drosophila melanogaster midgut. Ecotoxicology and Environmental Safety, 248 (2022). https://doi.org/10.1016/j.ecoenv.2022.114285. [CrossRef] [PubMed] [Google Scholar]
- O. Ibraheem, D. Bankole, A. Adedara, A. O. Abolaji, T. H. Fatoki, J. M. Ajayi, & C. T. Eze, Methanolic leaves and arils extracts of ackee (Blighia sapida) plant ameliorate mercuric chloride-induced oxidative stress in drosophila melanogaster. Biointerface Research in Applied Chemistry, 11 (2021) 7528-7542. https://doi.org/10.33263/BRIAC111.75287542. [Google Scholar]
- L. J. Sudmeier, S. P. Howard, & B. Ganetzky, A Drosophila model to investigate the neurotoxic side effects of radiation exposure. DMM Disease Models and Mechanisms, 8 (2015) 669-677. https://doi.org/10.1242/dmm.019786. [CrossRef] [PubMed] [Google Scholar]
- A. E. Peppriell, J. T. Gunderson, I. N. Krout, D. Vorojeikina, & M. D. Rand, Latent effects of early-life methylmercury exposure on motor function in Drosophila. Neurotoxicology and Teratology, 88 (2021). https://doi.org/10.1016/j.ntt.2021.107037. [CrossRef] [PubMed] [Google Scholar]
- S. Ohiomokhare, F. Olaolorun, A. Ladagu, F. Olopade, M.-J.R. Howes, E. Okello, J. Olopade, & P.L. Chazot, The pathopharmacological interplay between vanadium and iron in parkinson’s disease models. International Journal of Molecular Sciences, 21 (2020) 1-15. https://doi.org/10.3390/ijms21186719. [Google Scholar]
- Q. Wu, X. Du, X. Feng, H. Cheng, Y. Chen, C. Lu, M. Wu, & H. Tong, Chlordane exposure causes developmental delay and metabolic disorders in Drosophila melanogaster. Ecotoxicology and Environmental Safety, 225 (2021). https://doi.org/10.1016/j.ecoenv.2021.112739. [Google Scholar]
- S. Hückesfeld, M. Peters, & M. J. Pankratz, Central relay of bitter taste to the protocerebrum by peptidergic interneurons in the Drosophila brain. Nature Communications, 7 (2016). https://doi.org/10.1038/ncomms12796. [Google Scholar]
- L. Green, M. Coronado-Zamora, S. Radío, G.E. Rech, J. Salces-Ortiz, & J. González, The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors. BMC Biology, 20 (2022). https://doi.org/10.1186/s12915-022-01479-w. [CrossRef] [Google Scholar]
- S. Xiao, L. S. Baik, X. Shang, & J. R. Carlson, Meeting a threat of the Anthropocene: Taste avoidance of metal ions by Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 119 (2022). https://doi.org/10.1073/pnas.2204238119. [Google Scholar]
- M. J. Williams, L. Wiemerslage, P. Gohel, S. Kheder, L.V. Kothegala, & H.B. Schiöth, Dibutyl phthalate exposure disrupts evolutionarily conserved insulin and glucagon-like signaling in drosophila males. Endocrinology, 157 (2016) 2309-2321. https://doi.org/10.1210/en.2015-2006. [CrossRef] [PubMed] [Google Scholar]
- A. E. Peppriell, J. T. Gunderson, D. Vorojeikina, & M. D. Rand, Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology, 443 (2020). https://doi.org/10.1016/j.tox.2020.152561. [CrossRef] [PubMed] [Google Scholar]
- J. T. Gunderson, A. E. Peppriell, I. N. Krout, D. Vorojeikina, & M. D. Rand, Neuroligin-1 Is a Mediator of Methylmercury Neuromuscular Toxicity. Toxicological Sciences, 184 (2021) 236-251. https://doi.org/10.1093/toxsci/kfab114. [CrossRef] [PubMed] [Google Scholar]
- B. D. McKee, R. Yan, & J.-H. Tsai, Meiosis in male Drosophila. Spermatogenesis, 2 (2012) 167-184. https://doi.org/10.4161/spmg.21800. [CrossRef] [PubMed] [Google Scholar]
- L. H. Mason, J. P. Harp, & D. Y. Han, Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Research International, (2014) 1-8. https://doi.org/10.1155/2014/840547. [Google Scholar]
- G. Flora, D. Gupta, & A. Tiwari, Toxicity of lead: A review with recent updates. Interdisciplinary toxicology, 5 (2012) 47-58. https://doi.org/10.2478/v10102-012-0009-2. [CrossRef] [PubMed] [Google Scholar]
- A. L. Wani, A. Ara, & J. A. Usmani, Lead toxicity: A review. Interdisciplinary toxicology, 8 (2015) 55-64. https://doi.org/10.1515/intox-2015-0009. [CrossRef] [PubMed] [Google Scholar]
- Z. Alasmary, T. Todd, G. M. Hettiarachchi, T. Stefanovska, V. Pidlisnyuk, K. Roozeboom, L. Erickson, L. Davis, & O. Zhukov, Effect of soil treatments and amendments on the nematode community under miscanthus growing in a lead contaminated military site. Agronomy, 10 (2020) 1727. https://doi.org/10.3390/agronomy10111727. [CrossRef] [Google Scholar]
- J. J. Clark & A. C. Knudsen, Extent, characterization, and sources of soil lead contamination in small-urban residential neighborhoods. Journal of Environmental Quality, 42 (2013) 1498-1506. https://doi.org/10.2134/jeq2013.03.0100. [CrossRef] [PubMed] [Google Scholar]
- E. Obeng-Gyasi, Sources of lead exposure in various countries. Reviews on Environmental Health, 34 (2019) 25-34. https://doi.org/10.1515/reveh-2018-0037. [CrossRef] [PubMed] [Google Scholar]
- M. A. Assi, M. N. M. Hezmee, A. W. Haron, M. Y. M. Sabri, & M. A. Rajion, The detrimental effects of lead on human and animal health. Veterinary world, 9 (2016) 660-71. https://doi.org/10.14202/vetworld.2016.660-671. [CrossRef] [PubMed] [Google Scholar]
- M. Boskabady, N. Marefati, T. Farkhondeh, F. Shakeri, & A. Farshbaf, The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environment International, 120 (2018) 404-420. https://doi.org/10.1016/j.envint.2018.08.013. [CrossRef] [PubMed] [Google Scholar]
- R. Bian, S. Joseph, L. Cui, G. Pan, L. Li, X. Liu, A. Zhang, H. Rutlidge, S. Wong, C. Chia, C. Marjo, B. Gong, P. Munroe, & S. Donne, A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272 (2014) 121-128. https://doi.org/10.1016/j.jhazmat.2014.03.017. [CrossRef] [PubMed] [Google Scholar]
- U. Ashraf, A. S. Kanu, Z. Mo, S. Hussain, S. A. Anjum, I. Khan, R. N. Abbas, & X. Tang, Lead toxicity in rice: Effects, mechanisms, and mitigation strategies—a mini review. Environmental Science and Pollution Research, 22 (2015) 18318-18332. https://doi.org/10.1007/s11356-015-5463-x. [CrossRef] [PubMed] [Google Scholar]
- J.-W. Lee, H. Choi, U.-K. Hwang, J.-C. Kang, Y. J. Kang, K. Il Kim, & J.-H. Kim, Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environmental Toxicology and Pharmacology, 68 (2019) 101-108. https://doi.org/10.1016/j.etap.2019.03.010. [CrossRef] [PubMed] [Google Scholar]
- D. Khoiroh, L. Hindun, D. Fatmawati, S. Zubaidah, H. Susanto, & A. Fauzi, Drosophila melanogaster behavior study: Does plumbum affect pupation and climbing ability of imago? AIP Conference Proceedings (AIP Publishing, 2023), p. 020099. https://doi.org/10.1063/5.0111891. [CrossRef] [Google Scholar]
- O. Shilpa, K. P. Anupama, A. Antony, & H. P. Gurushankara, Lead (Pb)-induced oxidative stress mediates sex-specific autistic-like behaviour in Drosophila melanogaster. Molecular Neurobiology, 58 (2021) 6378-6393. https://doi.org/10.1007/s12035-021-02546-z. [CrossRef] [PubMed] [Google Scholar]
- O. Shilpa, K. P. Anupama, A. Antony, & H. P. Gurushankara, Lead (Pb) induced oxidative stress as a aechanism to cause neurotoxicity in Drosophila melanogaster. Toxicology, 462 (2021) 152959. https://doi.org/10.1016/j.tox.2021.152959. [CrossRef] [PubMed] [Google Scholar]
- D. Fatmawati, D. Khoiroh, S. Zubaidah, H. Susanto, M. Agustin, & A. Fauzi, Wing morphological changes of Drosophila melanogaster exposed with Lead in nine generations. AIP Conference Proceedings (AIP Publishing, 2022). [PubMed] [Google Scholar]
- A. Fauzi, S. Zubaidah, & H. Susanto, The study of larva and adult behavior of Drosophila melanogaster: Do strains affect behavior? In A. Taufiq, H. Susanto, H. Nur, M. Aziz, C.-R. Chang, H. Lee, M. Diantoro, N. Mufti, N.A.N.N. Malek, I.C. Wang, D.T. Iskandar, G. Elbers, S. Sunaryono, S. Zubaidah, S. Sumari, A. Aulanni’am, A.B. Nandiyanto, I. Wibowo, & A.Y. Handaya,eds., AIP Conference Proceedings (Malang: AIP Publishing, 2020), pp. 0400141-0400147. https://doi.org/10.1063/5.0002429. [Google Scholar]
- J. E. Fellmeth & K. S. McKim, A brief history of Drosophila (female) meiosis. Genes, 13 (2022) 775. https://doi.org/10.3390/genes13050775. [CrossRef] [PubMed] [Google Scholar]
- S. E. Hughes, D. E. Miller, A. L. Miller, & R. S. Hawley, Female meiosis: Synapsis, recombination, and segregation in Drosophila melanogaster. Genetics, 208 (2018) 875-908. https://doi.org/10.1534/genetics.117.300081. [CrossRef] [PubMed] [Google Scholar]
- O. Yildiz, H. Kearney, B. C. Kramer, & J. J. Sekelsky, Mutational analysis of the Drosophila DNA repair and recombination gene mei-9. Genetics, 167 (2004) 263-73. https://doi.org/10.1534/genetics.167.1.263. [CrossRef] [PubMed] [Google Scholar]
- J. Thurmond, J. L. Goodman, V. B. Strelets, H. Attrill, L. S. Gramates, S. J. Marygold, B. B. Matthews, G. Millburn, G. Antonazzo, V. Trovisco, T. C. Kaufman, B. R. Calvi, N. Perrimon, S. R. Gelbart, J. Agapite, K. Broll, L. Crosby, G. dos Santos, D. Emmert, L. S. Gramates, K. Falls, V. Jenkins, B. Matthews, C. Sutherland, C. Tabone, P. Zhou, M. Zytkovicz, N. Brown, G. Antonazzo, H. Attrill, P. Garapati, A. Holmes, A. Larkin, S. Marygold, G. Millburn, C. Pilgrim, V. Trovisco, P. Urbano, T. Kaufman, B. Calvi, B. Czoch, J. Goodman, V. Strelets, J. Thurmond, R. Cripps, & P. Baker, FlyBase 2.0: The next generation. Nucleic Acids Research, 47 (2019) D759-D765. https://doi.org/10.1093/nar/gky1003. [Google Scholar]
- K. S. McKim & A. Hayashi-Hagihara, mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes & Development, 12 (1998) 2932-2942. https://doi.org/10.1101/gad.12.18.2932. [CrossRef] [PubMed] [Google Scholar]
- L. W. Hemmer & J. P. Blumenstiel, Holding it together: Rapid evolution and positive selection in the synaptonemal complex of Drosophila. BMC Evolutionary Biology, 16 (2016) 91. https://doi.org/10.1186/s12862-016-0670-8. [CrossRef] [PubMed] [Google Scholar]
- M. R. Gyuricza, K. B. Manheimer, V. Apte, B. Krishnan, E. F. Joyce, B. D. McKee, & K. S. McKim, Dynamic and stable cohesins regulate synaptonemal complex assembly and chromosome segregation. Current Biology, 26 (2016) 1688-1698. https://doi.org/10.1016/j.cub.2016.05.006. [CrossRef] [PubMed] [Google Scholar]
- R. Yan & B. D. McKee, The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila meiosis. PLoS Genetics, 9 (2013) e1003637. https://doi.org/10.1371/journal.pgen.1003637. [CrossRef] [PubMed] [Google Scholar]
- P. Wild, A. Susperregui, I. Piazza, C. Dörig, A. Oke, M. Arter, M. Yamaguchi, A. T. Hilditch, K. Vuina, K. C. Chan, T. Gromova, J. E. Haber, J. C. Fung, P. Picotti, & J. Matos, Network rewiring of homologous recombination enzymes during mitotic proliferation and meiosis. Molecular Cell, 75 (2019) 859-874.e4. https://doi.org/10.1016/j.molcel.2019.06.022. [CrossRef] [PubMed] [Google Scholar]
- R. Nagaraju, R. Kalahasthi, R. Balachandar, & B. S. Bagepally, Association between lead exposure and DNA damage (genotoxicity): systematic review and meta-analysis. Archives of Toxicology, 96 (2022) 2899-2911. https://doi.org/10.1007/s00204-022-03352-9. [CrossRef] [PubMed] [Google Scholar]
- G. Kaur, H. P. Singh, D. R. Batish, & R. K. Kohli, Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism. Ecotoxicology, 23 (2014) 1292-1304. https://doi.org/10.1007/s10646-014-1272-0. [CrossRef] [PubMed] [Google Scholar]
- N. Hunter, Meiotic recombination: The essence of heredity. Cold Spring Harbor Perspectives in Biology, (2015) a016618. https://doi.org/10.1101/cshperspect.a016618. [CrossRef] [PubMed] [Google Scholar]
- A. R. Hughes, B. D. Inouye, M. T. J. Johnson, N. Underwood, & M. Vellend, Ecological consequences of genetic diversity. Ecology Letters, 11 (2008) 609-623. https://doi.org/10.1111/j.1461-0248.2008.01179.x. [CrossRef] [PubMed] [Google Scholar]
- A. S. Jump, R. Marchant, & J. Peñuelas, Environmental change and the option value of genetic diversity. Trends in Plant Science, 14 (2009) 51-58. https://doi.org/10.1016/j.tplants.2008.10.002. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.