Open Access
Issue |
BIO Web Conf.
Volume 122, 2024
2024 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE 2024)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/bioconf/202412201014 | |
Published online | 17 July 2024 |
- B. K. Singh, P. Trivedi, E. Egidi, C. A. Macdonald, M. Delgado-Baquerizo, Crop microbiome and sustainable agriculture, Nature Reviews Microbiology, 18, 11 (2020). https://doi.org/10.1038/s41579-020-00446-y [Google Scholar]
- M. A. Altaf et al., Melatonin alleviates salt damage in tomato seedling: A root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis, Sci Hortic, 285 (2021). https://doi.org/10.1016/j.scienta.2021.110145 [CrossRef] [Google Scholar]
- T. Zhan et al., Chitin combined with selenium reduced nitrogen loss in soil and improved nitrogen uptake efficiency in Guanxi pomelo orchard, Science of the Total Environment, 799 (2021). https://doi.org/10.1016/j.scitotenv.2021.149414 [CrossRef] [Google Scholar]
- G. Wang, H. Zhang, F. Lai, H. Wu, Germinating Peanut (Arachis hypogaea L.) Seedlings Attenuated Selenite-Induced Toxicity by Activating the Antioxidant Enzymes and Mediating the Ascorbate-Glutathione Cycle, J Agric Food Chem. 64, 6 (2016). https://doi.org/10.1021/acs.jafc.5b05945 [CrossRef] [PubMed] [Google Scholar]
- D. Delaqua, R. Carnier, R. S. Berton, F. C. A. Corbi, A. R. Coscione, Increase of selenium concentration in wheat grains through foliar application of sodium selenate, Journal of Food Composition and Analysis, 99 (2021). https://doi.org/10.1016/j.jfca.2021.103886 [CrossRef] [Google Scholar]
- Q. Wang et al., Effects of Different Forms of Selenium Fertilizers on Se Accumulation, Distribution, and Residual Effect in Winter Wheat-Summer Maize Rotation System, J Agric. Food. Chem. 65, 6 (2017). https://doi.org/10.1021/acs.jafc.6b05149 [CrossRef] [PubMed] [Google Scholar]
- Z. Pu et al., Selenium and anthocyanins share the same transcription factors R2R3MYB and bHLH in wheat, Food Chem. 356 (2021), https://doi.org/10.1016/j.foodchem.2021.129699 [Google Scholar]
- S. M. Zahedi, F. Moharrami, S. Sarikhani, M. Padervand, Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress, Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-74273-9 [CrossRef] [Google Scholar]
- P. Cervantes-Avilés, X. Huang, A. A. Keller, Dissolution and Aggregation of Metal Oxide Nanoparticles in Root Exudates and Soil Leachate: Implications for Nanoagrochemical Application, Environ. Sci. Technol. 55, 20 (2021). https://doi.org/10.1021/acs.est.1c00767 [Google Scholar]
- S. Talebian, T. Rodrigues, J. Das Neves, B. Sarmento, R. Langer, J. Conde, Facts and Figures on Materials Science and Nanotechnology Progress and Investment, ACS Nano, 15, 10 (2021). https://doi.org/10.1021/acsnano.1c03992 [Google Scholar]
- M. W. Mazhar, M. Ishtiaq, M. Maqbool, R. Akram, Seed priming with Calcium oxide nanoparticles improves germination, biomass, antioxidant defence and yield traits of canola plants under drought stress, South African Journal of Botany, 151 (2022). https://doi.org/10.1016/j.sajb.2022.11.017 [Google Scholar]
- S. V. Gudkov et al., Production and Use of Selenium Nanoparticles as Fertilizers, ACS Omega, 5, 28 (2020). https://doi.org/10.1021/acsomega.0c02448 [Google Scholar]
- S. M. Joshi, S. De Britto, S. Jogaiah, Myco-engineered selenium nanoparticles elicit resistance against tomato late blight disease by regulating differential expression of cellular, biochemical and defense responsive genes, J. Biotechnol, 325 (2021). https://doi.org/10.1016/j.jbiotec.2020.10.023 [Google Scholar]
- C. Gong, L. Wang, X. Li, H. Wang, Y. Jiang, W. Wang, Responses of seed germination and shoot metabolic profiles of maize (: Zea mays L.) to Y2O3 nanoparticle stress, RSC Adv. 9, 47 (2019). https://doi.org/10.1039/c9ra04672k [Google Scholar]
- J. F. G. M. Wintermans A. De Mots, 44 S Biochimica et Biophysica Acta -BBA 45 224 Spectrophotometric Characteristics Of Chlorophylls a And b And Their Pheophytins In Ethanol (1965). https://doi.org/10.1016/0926-6585(65)90170-6 [Google Scholar]
- R. P. W. & I. D. T. L. S. Bates, Rapid determination of free proline for water-stress studies (1973). https://doi.org/10.1007/BF00018060 [Google Scholar]
- J. Lian et al., Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.), Chemosphere, 239 (2020). https://doi.org/10.1016/j.chemosphere.2019.124794 [CrossRef] [PubMed] [Google Scholar]
- J. Cao, Y. Feng, S. He, X. Lin, Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study, Applied Soil Ecology, 119 (2017). https://doi.org/10.1016/j.apsoil.2017.04.011 [Google Scholar]
- A. Shiriaev et al., Selenium Biofortification Impacts the Tomato Fruit Metabolome and Transcriptional Profile at Ripening, J. Agric. Food. Chem. 71, 36 (2023). https://doi.org/10.1021/acs.jafc.3c02031 [Google Scholar]
- C. B. Rohal, C. R. Adams, C. W. Martin, S. Tevlin, L. K. Reynolds, Seed bank and germination ecology of sub-tropical Vallisneria americana, Aquat. Bot. 190 (2024), https://doi.org/10.1016/j.aquabot.2023.103721 [CrossRef] [Google Scholar]
- Z. Wang et al., Xylemand phloem-based transport of CuO nanoparticles in maize (Zea mays L.), Environ. Sci. Technol. 46, 8 (2012). https://doi.org/10.1021/es204212z [Google Scholar]
- J. Hong, C. Wang, D. C. Wagner, J. L. Gardea-Torresdey, F. He, C. M. Rico, Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts, Environmental Science: Nano, 8, 5 (2021). https://doi.org/10.1039/d0en01129k [Google Scholar]
- E. Spielman-Sun et al., Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy, Environ. Sci. Nano. 6, 8 (2019). https://doi.org/10.1039/c9en00626e [Google Scholar]
- J. Lv, P. Christie, S. Zhang, Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges, Environmental Science: Nano, 6, 1 (2019). https://doi.org/10.1039/C8EN00645H [CrossRef] [Google Scholar]
- A. do E. S. Pereira, H. C. Oliveira, L. F. Fraceto, Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study, Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-43494-y [CrossRef] [Google Scholar]
- N. Verbruggen, C. Hermans, Proline accumulation in plants: A review, Amino Acids, 35, 4 (2008). https://doi.org/10.1007/s00726-008-0061-6 [Google Scholar]
- P. E. Verslues, S. Sharma, Proline Metabolism and Its Implications for PlantEnvironment Interaction, Arabidopsis Book, 8 (2010). https://doi.org/10.1199/tab.0140 [Google Scholar]
- S. Hayat, Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel, A. Ahmad, Role of proline under changing environments: A review, Plant Signaling and Behavior, 7, 11 (2012). https://doi.org/10.4161/psb.21949 [Google Scholar]
- A. Tanaka, R. Tanaka, Chlorophyll metabolism, Curr. Opin. Plant. Biol. 9, 3 (2006). https://doi.org/10.1016/j.pbi.2006.03.011 [Google Scholar]
- R. Mattioli, P. Costantino, M. Trovato, Proline accumulation in plants: not only stress., Plant signaling & behavior, 4, 11 (2009). https://doi.org/10.4161/psb.4.11.9797 [Google Scholar]
- Q. Wang, Y. Zhang, H. Hu, J. Hu, M. Xiang, Q. F. Yang, Comparative proteomics analysis of the responses to selenium in selenium-enriched alfalfa (Medicago sativa L.) leaves, Plant Physiology and Biochemistry, 165 (2021). https://doi.org/10.1016/j.plaphy.2021.04.039 [Google Scholar]
- P. J. White, Selenium metabolism in plants, Biochimica et Biophysica Acta - General Subjects, 1862, 11 (2018). https://doi.org/10.1016/j.bbagen.2018.05.006 [Google Scholar]
- P. J. White, Selenium in soils and crops, in Molecular and Integrative Toxicology, Springer Science+Business Media B.V. (2018), https://doi.org/10.1007/978-3-319-95390-8_2 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.