Open Access
Issue |
BIO Web Conf.
Volume 123, 2024
The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 11 | |
Section | Agriculture, Animal Sciences, Agroforestry, and Agromaritime Innovation | |
DOI | https://doi.org/10.1051/bioconf/202412301005 | |
Published online | 30 August 2024 |
- Banowati, E., Indriyanti, D. R., Anisykurlillah, I., Pratikto, H. H., and Sari, Y, Increasing the competency of cassava farmers as a revitalization efforts of tapioca industries for food private realization. International Journal of Geomate. 19, 117-122 (2020) [CrossRef] [Google Scholar]
- Suryani, R, Cassava Outlook: Agricultural Commodities in the Food Crops Subsector. In Center for Agricultural Data and Information Systems Secretariat General of the Ministry of Agriculture (2020), ISSN: 1907-1507, p.72. https://satudata.pertanian.go.id/assets/docs/publikasi/outlook cassava.2020.pdf [Google Scholar]
- Wanapat, M, The role of cassava hay as animal feed. 7th Regional Workshop, July 21 (2002) [Google Scholar]
- Sirait, J., and Simanihuruk, K, Potential and Utilization of Cassava and Sweet Potato Leaves as a Source of Small Ruminant Animal Feed. Wartazoa. 20, 75-84 (2010) [Google Scholar]
- Oresegun, A., Fagbenro, O. A., Ilona, P., and Bernard, E, Nutritional and antinutritional composition of cassava leaf protein concentrate from six cassava varieties for use in aqua feed. Cogent Food and Agriculture. 2 (2016) [CrossRef] [Google Scholar]
- Wanapat, M., and Khampa, S, Effect of cassava hay in high-quality feed block as anthelmintics in steers grazing on ruzi grass. Asian-Australasian Journal of Animal Sciences. 19, 695-698 (2006) [Google Scholar]
- Samedi, L., and Charles, A. L, Isolation and characterization of potential probiotic Lactobacilli from leaves of food plants for possible additives in pellet feeding. Annals of Agricultural Sciences. 64, 55-62 (2019) [CrossRef] [Google Scholar]
- Duong, N. K., Wiktorsson, H., and Preston, T. R., Yield and chemical composition of cassava foliage and tuber yield as influenced by harvesting height and cutting interval. Asian-Australasian Journal of Animal Sciences. 18, 1029-1035 (2015) [Google Scholar]
- Kiyothong, K., and Wanapat, M, Growth, hay yield and chemical composition of cassava and stylo 184 grown under intercropping. Asian-Australasian Journal of Animal Sciences. 17, 799-807 (2004) [CrossRef] [Google Scholar]
- Huang, Q., Liu, X., Zhao, G., Hu, T., and Wang, Y, Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. In Animal Nutrition. 4, 137-150 (2018) [CrossRef] [Google Scholar]
- Stephanie, and Purwadaria, Solid Substrate Fermentation of Cassava Peel for Poultry Feed Ingredient. Indonesian Bulletin of Animal and Veterinary Sciences. 23, 15-22 (2014) [Google Scholar]
- Patra, A. K., and Saxena, J, A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 71, 1198-1222 (2010) [CrossRef] [Google Scholar]
- Arsad, E., and Saibatul Hamdi. Activated Carbon Processing and Utilization Technology for Industry. Forest Products Industry Research Journal, 2(2), 43 (2016) [Google Scholar]
- Dewi, R., Azhari, A., and Nofriadi, I, Carbon Activation of Areca Nut Shell Using Chemical Activator Koh. Unimal Journal of Chemical Technology. 9, 12 (2021) [Google Scholar]
- Najmia, H., Mahreda, E. S., Mahyudin, R. P., and Kissinger, K, Utilization of H3PO4 Activated Palm Shell Activated Charcoal to Reduce Iron (Fe), Manganese (Mn) Levels and pH Conditions in Acid Mine Water. Enviro Scientea Journal. 17, 21-29 (2021) [Google Scholar]
- Manurung, M., Ratnayani, O., and Prawira, R. A. Synthesis and Characterization of Charcoal from Bamboo Waste. Chemical Chakras, 7(1), 69-77 (2019). [Google Scholar]
- Hartati, R., Anita, S., & Bali, S. Potential of Betung Bamboo (Dendrocalamus Asper) Activated Charcoal as an Adsorbent for Zn2+ and SO42-Ions in the Water of the Buruk Bakul Well, Bengkalis. Repository University of Riau, 3, 1-10 (2016) [Google Scholar]
- Chaturvedi, K., Singhwane, A., Dhangar, M., Mili, M., Gorhae, N., Naik, A., Prashant, N., Srivastava, A. K., and Verma, S. Bamboo for producing charcoal and biochar for versatile applications. Biomass Conversion and Biorefinery, 0123456789 (2023) [PubMed] [Google Scholar]
- Soto-Blanco, B., & Górniak, S. L. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats. Experimental and Toxicologic Pathology, 62 (4), 361-366 (2010) [CrossRef] [PubMed] [Google Scholar]
- AOAC.Official Methods of Analysis of the Association of Official Analytical Chemists. Published by the Association of Official Analytical Chemist. Marlyand (2005) [Google Scholar]
- Lowry, OH, NJ Rosbrough, AL Farr, and RJ Randall. J. Biol. Chem. 193: 265. (1951). https://www.ruf.rice.edu/~bioslabs/methods/protein/lowry.html [CrossRef] [Google Scholar]
- Tilley, J. M. A., and Terry, R. A., a Two‐Stage Technique for the in Vitro Digestion of Forage Crops. Grass and Forage Science. 18, 104-111 (1963) [CrossRef] [Google Scholar]
- Lumbantobing, R., Napitupulu, M., and Jura, M. R., Analysis of Cyanide Acid Content in Cassava (Manihot esculenta) Based on Storage Time. Jurnal of Chemistry Academic. 8, 180-183 (2020) [Google Scholar]
- Siqhny, Z. D., Sani, E. Y., and Fitriana, I, Reducing HCN Levels in Gadung Tubers Using Variations of Rubbed Ash and Lime Water. Journal of Food Technology and Agricultural Products. 15, 1 (2020) [Google Scholar]
- Kamboh, A. A., Arain, M. A., Muchal, M. J., Zaman, A., Arain, Z. M., and Soomro, A.H., Flavonoids: Health promoting phytochemicals for animal production-a Review. Journal of Animal Health and Production. 3, 6-13 (2015) [CrossRef] [Google Scholar]
- Istiana, S., and Prasetya, T. Preparation of Magnetite Trembesi Activated Charcoal for Adsorption of Tannin Compounds in Liquid Waste. Indonesian Journal of Chemical Science, 9(1), 17-23 (2020) [Google Scholar]
- Lumbantobing, R., Napitupulu, M., and Jura, M. R., Analysis of Cyanide Acid Content in Cassava (Manihot esculenta) Based on Storage Time. Jurnal of Chemistry Academic. 8, 180-183 (2020) [Google Scholar]
- Alfauzi, R. A., Hartati, L., Suhendra, D., Rahayu, T., and Hidayah, N., Extraction of Jengkol (Archidendron jiringa) Skin Bioactive Compounds with Different Concentrations of Methanol Solvent as Additional Feed for Ruminant Animals. Journal of Nutritional Science and Feed Technology, 20(3), 95-103 (2022) [Google Scholar]
- Wilson, K, Biochar as Feed Supplement for Cattle. Pdfs.Semanticscholar.Org. 12 (2016). www.wilsonbiochar.com. [Google Scholar]
- Ali, F., Ali, N., Bibi, I., Said, A., Nawaz, S., Ali, Z., Salman, S. M., Iqbal, H. M. N., and Bilal, M, Adsorption isotherm, kinetics and thermodynamic of acid blue and basic blue dyes onto activated charcoal. In Case Studies in Chemical and Environmental Engineering, 2 (2020) [Google Scholar]
- Kurniawan, R., Luthfi, M., & Wahyunanto, A. Karakterisasi Luas Permukaan Bet ( Braunanear , Emmelt dan Teller ) Karbon Aktif dari Tempurung Kelapa dan Tandan Kosong Kelapa Sawit dengan Aktivasi Asam Fosfat. Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 2(1), 15-20 (2014) [Google Scholar]
- Leng, R. A., Inthapanya, S., & Preston, T. R. Biochar lowers net methane production from rumen fluid in vitro. Livestock Research for Rural Development, 24(6), 10 (2010) [Google Scholar]
- Al-Kindi, A., Schlecht, E., Schiborra, A., & Joergensen, R. G. Effects of quebracho tannin extract (Schinopsis balansae) and activated charcoal on feed intake and digestibility by goats and their faecal microbial biomass. Biological Agriculture and Horticulture, 32(3), 159-169 (2016) [CrossRef] [Google Scholar]
- Min, B.R., W.C. Mcnabb, T.N. Barry and J.S. Peters. Solubilization and degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39; Rubisco) protein from white clover (Trifolium repens) and Lotus corniculatus byrumen microorganisms and the effect of condensed tannins on these processes. J. Agric. Sci. (Camb.) 134: 305-317 (2000) [CrossRef] [Google Scholar]
- Pranata, R., and Chuzaemi, S, In Vitro Digestibility Values of Coffee Hulls (Coffea Sp.) Complete Feed with Leguminosa Leaves Addition. 3, 48-54 (2020) [Google Scholar]
- Fredriksz, S., and Joris, L, Using Sago Pith As Adhesive Substance in Vitro Digestibility of Complete Ration Biscuit. Jurnal of Small Islands Forest. 4, 91-101 (2020) [Google Scholar]
- Aprianto, S. A., Asril, and Usman, Y, Evaluation of In Vitro Digestibility of Complete Fermented Feed Made from Sago Dregs with Different Fermentation Techniques. Unsyiah Agricultural Student Scientific Journal. 1, 1009-1016 (2016) [Google Scholar]
- Harniati, H., Islamiyati, R., and Ismartoyo, I, In Vitro Digestibility of Dry Materials and Organic Materials of Maja Leaves (Aegle marmelos) and Gamal Leaves (Gliricidiasepium). Animal Nutrition and Forage Bulletin. 13, 1 (2019) [Google Scholar]
- Rahalus, R., Tulung, B., Maarul, K., and Wolayan, F, Effect of Concentrate Use in Bengal Grass Feed (Panicum Maximum) on the Digestibility of NDF and ADF in Local Goats. Zootek. 34, 75-82 (2014) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.