Open Access
Issue
BIO Web Conf.
Volume 123, 2024
The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024)
Article Number 02010
Number of page(s) 11
Section Bioresources in Food and Nutrition for a Healthier Future
DOI https://doi.org/10.1051/bioconf/202412302010
Published online 30 August 2024
  • I. Batubara, M.E. Prastya. Potential use of indonesian medicinal plants for cosmetic and oral health: a review. J. Kimia Valensi. 16(1), 131-137 (2022). [Google Scholar]
  • J.-J. Chen, J.-S. Deng, C.-C. Huang, P.-Y. Li, Y.-C. Liang, C.-Y. Chou, G.-J. Huang. Coumaric-acid-containing Adenostemma lavenia ameliorates acute lung injury by activating AMPK/Nrf2/HO-1 signaling and improving the anti-oxidant response. Am. J. Chin. Med. 47(07), 1483-1506 (2019). [CrossRef] [PubMed] [Google Scholar]
  • E. Budiarti, I. Batubara, and A. Ilmiawati, The potency of Asteraceae plants extracts as antioxidant and antiglycation agent. J. Jamu Indones. 4(3), 103-111 (2019). [CrossRef] [Google Scholar]
  • I. Batubara, R.I. Astuti, M.E. Prastya, A. Ilmiawati, M. Maeda, M. Suzuki, A. Hamamoto, H. Takemori. The antiaging effect of active fractions and ent-11a-hydroxy- 15-oxo-kaur-16-en-19-oic acid isolated from Adenostemma lavenia (L.) O. Kuntze at the cellular level. Antioxidants. 9(8), 719 (2020). [CrossRef] [Google Scholar]
  • N. Nurlela, B. Badrunanto, A. Ilmiawati, W. Nurcholis, H. Takemori, and I. Batubara. The medicinal potential of plants from the Adenostemma genus. J Appl Pharm Sci. 13(8), 001-011 (2023). https://doi.org/10.7324/JAPS.2023.95766 [Google Scholar]
  • N. Nurlela, S. T. Wahyudi, A. Ilmiawati, W. Nurcholis, H. Takemori, and I. Batubara. Chemical profiling and computational identification of potential antibacterials from Adenostemma species. S. Afr. J. Bot. 162, 847-863 (2023). https://doi.org/10.1016/j.sajb.2023.10.010 [CrossRef] [Google Scholar]
  • M. Bouafia, N. Colak, F.A. Ayaz, A. Benarfa, M. Harrat, N. Gourine, M. Yousfi. The optimization of ultrasonic-assisted extraction of Centaurea sp. antioxidative phenolic compounds using response surface methodology, J. Appl. Res. Med. Aromat. Plants. 25, 100330 (2021). https://doi.org/10.1016/jjarmap.2021.100330 [Google Scholar]
  • S. Ö. Yazici. Optimization of all extraction process for phenolic compounds with maximum antioxidant activity from extract of Taraxacum assemanii by statistical strategies. Food Measure. 15(5), 4388-4402 (2021). https://doi.org/10.1007/s11694-021-01005-6N. [CrossRef] [Google Scholar]
  • Sendi, K. Mkadmini-Hammi, R.B. Mansour, S. Selmi, N. Trabelsi, H. Isoda, R. Ksouri, W. Megdiche-Ksouri. Simultaneous optimization of ultrasound-assisted extraction of flavonoid compounds and antiradical activity from Artemisia herba-Alba using response surface methodology. Prep. Biochem. Biotech. 50(9), 943-953 (2020). https://doi.org/10.1080/10826068.2020.1774778 [CrossRef] [PubMed] [Google Scholar]
  • A. G. Covarrubias-Cardenas, J.I. Martinez-Castillo, N. Medina-Torres, T. Ayora-Talavera, H. Espinosa-Andrews, N.U. Garcia-Cruz, N. Pacheco. Antioxidant capacity and UPLC-PDA ESI-MS phenolic profile of Stevia rebaudiana dry powder extracts obtained by ultrasound assisted extraction. Agronomy. 8(9), 170 (2018). https://doi.org/10.3390/agronomy8090170 [CrossRef] [Google Scholar]
  • I. Batubara, K. Komariah, A. Sandrawati, W. Nurcholis. Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. leaves using chemometric analysis. Sci Rep. 10(1), 20945 (2020). [CrossRef] [Google Scholar]
  • M.E. Prastya, R.I. Astuti, I. Batubara, A.T. Wahyudi. Bacillus sp. SAB E-41-derived extract shows antiaging properties via ctt1-mediated oxidative stress tolerance response in yeast Schizosaccharomyces pombe. Asian Pac. J. Trop. Biomed. 8(11), 533-539 (2018). [CrossRef] [Google Scholar]
  • C. Irawan, I.D. Putri, M. Sukiman, A. Utami, Ismail, R.K. Putri, A. Lisandi, A.N. Pratama. Antioxidant activity of DPPH, CUPRAC, and FRAP methods, as well as activity of alpha-glucosidase inhibiting enzymes from Tinospora crispa (L.) stem ultrasonic extract. Pharmacogn J. 14(5), 511-520 (2022). [CrossRef] [Google Scholar]
  • M. S. Blois. Antioxidant determinations by the use of a stable free radical. Nature. 181(4617), 1199-1200 (1958). [CrossRef] [Google Scholar]
  • N. Medina-Torres, T. Ayora-Talavera, H. Espinosa-Andrews, A. Sanchez-Contreras, N. Pacheco. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy. 7(3), 47 (2017). [CrossRef] [Google Scholar]
  • J. Sang, J. Sang, Q. Ma, X. Hou, C. Li. Extraction optimization and identification of anthocyanins from Nitraria tangutorun Bobr. seed meal and establishment of a green analytical method of anthocyanins. Food Chem. 218, 386-395 (2017). [CrossRef] [Google Scholar]
  • M.A. Syabana, N.D. Yuliana, I. Batubara, D. Fardiaz. A-glucosidase inhibitors from Syzygium polyanthum (Wight) Walp leaves as revealed by metabolomics and in silico approaches. J. Ethnopharmacol. 282, [Google Scholar]
  • D. B. Muniz-Marquez, G. C. Marti'nez-Âvila, J. E. Wong-Paz, R. Belmares-Cerda, R. Rodriguez-Herrera, C. N. Aguilar. Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason. Sonochem. 20(5), 1149-1154 (2013). [CrossRef] [Google Scholar]
  • A. Tomsik, B. Pavlic, J. Vladic, M. Ramie, J. Brindza, S. Vidovic. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem. 29, 502-511 (2016). [CrossRef] [Google Scholar]
  • S. Chen, Z. Zeng, N. Hu, B. Bai, H. Wang, Y. Suo. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology. Food Chem. 242, 1-8 (2018). [CrossRef] [Google Scholar]
  • L. Galvan d’Alessandro, K. Kriaa, I. Nikov, K. Dimitrov. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 93, 42-47 (2012). [CrossRef] [Google Scholar]
  • N. Nurlela, R. Nurfalah, F. Ananda, T. Ridwan, A. Ilmiawati, W. Nurcholis, H. Takemori, I. Batubara. Variation of morphological characteristics, total phenolic, and total flavonoid in Adenostemma lavenia, A. madurense, and A. platyphyllum. Biodiversitas. 23(8), 3999-4005 (2022). [CrossRef] [Google Scholar]
  • N.A.F. Baharuddin, M.F.M. Nordin, N.A. Morad, N.I.A. Aris, M.A.C. Yunus. Total phenolic, flavonoid content and antioxidant activity of Clinacanthus nutans leaves by water-based ultrasonic assisted extraction. Malays. J. Anal. Sci. 22(4), 659-666 (2018). [Google Scholar]
  • O. R. Alara, N. H. Abdurahman, C. I. Ukaegbu. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 4, 200-214 (2021). [CrossRef] [Google Scholar]
  • I. Gulcin. Antioxidants and antioxidant methods: an updated overview. Arch. Toxicol. 94(3), 651-715 (2020). [CrossRef] [PubMed] [Google Scholar]
  • J. Xiao. Dietary flavonoid aglycones and their glycosides: which show better biological significance?. Crit. Rev. Food Sci. Nutr. 57(9), 1874-1905 (2017). [Google Scholar]
  • R. E. Shafek, N. H. Shafik, H. N. Michael. Antibacterial and antioxidant activities of two new kaempferol glycosides isolated from Solenostemma argel stem extract. Asian J. Plant Sci. 11(3), 143-147 (2012). [CrossRef] [Google Scholar]
  • R. Torres-Martinez, Y.M. Garcia-Rodriguez, P. Rios-Chavez, A. Saavedra-Molina, J.E. Lopez-Meza, A. Ochoa-Zarzosa, R.S. Garciglia. Antioxidant activity of the essential oil and its major terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. Phcog. Mag. 13, S875-80 (2017). [Google Scholar]
  • Badrunanto, W.T. Wahyuni, M. Farid, I. Batubara, K. Yamauchi. Antioxidant components of the three different varieties of Indonesian ginger essential oil: In vitro and computational studies. Food Chem. Adv. 4, 100558 (2024). [CrossRef] [Google Scholar]
  • I. Gulcin, S. H. Alwasel. DPPH radical scavenging assay. Processes. 11(8), 2248(2023). [CrossRef] [Google Scholar]
  • I.G. Munteanu, C. Apetrei. Analytical methods used in determining antioxidant activity: a review. Int. J. Mol. Sci. 22(7), 3380 (2021). [CrossRef] [Google Scholar]
  • M. Özyürek, K. Güçlü, R. Apak. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends Anal. Chem. 30(4), 652-664 (2011). [CrossRef] [Google Scholar]
  • Y.-C. Tang, Y.-J. Liu, G.-R. He, Y.-W. Cao, M.-M. Bi, M. Song, P.-P. Yang, L.-F. Xu, J. Ming. Comprehensive analysis of secondary metabolites in the extracts from different lily bulbs and their antioxidant ability. Antioxidants. 10(10), 1634 (2021). [CrossRef] [Google Scholar]
  • N.-E. Es-Safi, S. Khlifi, L. Kerhoas, A. Kollmann, A.E. Abbouyi, P.-H. Ducrot. Antioxidant constituents of the aerial parts of Globularia alypum growing in Morocco. J. Nat. Prod. 68, 1293-1296 (2005). [CrossRef] [PubMed] [Google Scholar]
  • X. Jiang, J. Tian, Y. Zheng, Y. Zhang, Y. Wu, C. Zhang, H. Zheng, F. Hu. A new propolis type from Changbai Mountains in North-East China: chemical composition, botanical origin and biological activity. Molecules. 24, 1369 (2019). [CrossRef] [Google Scholar]
  • M. Bener, M. Özyürek, K. Güçlü, R. Apak. Development of a low-cost optical sensor for cupric reducing antioxidant capacity measurement of food extracts. Anal. Chem. 82(10), 4252-4258 (2010). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.