Open Access
Issue
BIO Web Conf.
Volume 123, 2024
The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024)
Article Number 02009
Number of page(s) 12
Section Bioresources in Food and Nutrition for a Healthier Future
DOI https://doi.org/10.1051/bioconf/202412302009
Published online 30 August 2024
  • J. Arvanitakis, R.-C. Shah, D.-A, Bennett. Diagnosis and management of dementia: a review. JAMA. 322, 1589-1599 (2019) [Google Scholar]
  • E.-J. Tettevi, D.-N.-O. Kuevi, B.-K. Sumabe, D.-L. Simpong, M.-B. Maina, J.-T. Dongdem, M.-Y. Osei-Atweneboana, A Ocloo. In silico identification of a potential tnf- alpha binder using a structural similarity: a potential drug repurposing approach to the management of alzheimer’s disease. Bio. Med. Res. Int. 19, 1598-1695 (2024) [Google Scholar]
  • [ADI] Alzheimer’s Disease International. Dementia statistics [accessed October 20th, 2022] E. Nichols, J.-D. Steinmetz, S.-E. Vollset, K. Fukutaki, J. Chalek, F. Abd-Allah, A. Abdoli, A. Abualhasan, E. Abu-Gharbieh, T.-T. Akram, et al. Estimation of the globalprevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health. 7, E105-E125 (2022) [Google Scholar]
  • A. Wimo, K. Seeher, R. Cataldi, E. Cyhlarova, J.-L. Dielemann, O. Frisell, M. Guerchet, L. Jönsson, A.-K. Malaha, E. Nichols, et al. The worldwide costs of dementia in 2019. Alzheimer's. Dement. 19, 2865-2873 (2023) [CrossRef] [PubMed] [Google Scholar]
  • S. Duong, T. Patel, F. Chang. Dementia: what pharmacists need to know. Can. Pharm. J. 250, 118-129 (2017) [CrossRef] [PubMed] [Google Scholar]
  • H. Chertkow, H. H. Feldman, C. Jacova, F. Massoud. Definitions of dementia and predementia states in Alzheimer's disease and vascular cognitive impairment: consensus from the Canadian conference on diagnosis of dementia. Alzheimer’s Res. Ther. 5, S2 (2013) [CrossRef] [Google Scholar]
  • [APA] American Psychiatric Association. Supplement to diagnostic and statistical manual of mental disorders, fifth edition (American Psychiatric Association Publishing, Washington DC, 2018) [Google Scholar]
  • Z. R. Chen, J. B. Huang, S. H. Yang, F. F. Hong. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 27, 1816 (2022) [CrossRef] [Google Scholar]
  • B. Yegla, V. Parikh. Developmental suppression of forebrain trkA receptors and attentional capacities in aging rats: A longitudinal study. Behav. Brain Res. 335, 111121 (2017) [CrossRef] [Google Scholar]
  • M. Bond, G. Rogers, J. Peters, R. Anderson, M. Hoyle, A. Miners, T. Moxham, S. Davis, P. Thokala, A. Wailoo, M. Jeffreys, C. Hyde. The effectiveness and cost-effectiveness of donepezil galantamine rivastigmine and memantine for the treatment of Alzheimer's disease (review of technology appraisal no. 111): A systematic review and economic model. Health Tech. Assess. 16, 1-469 (2012) [CrossRef] [Google Scholar]
  • G. Carney, K. Bassett, J. M. Wright, M. Maclure, N. McGuire, C. R. Dormuth. Comparison of cholinesterase inhibitor safety in real-world practice. Alzheimer’s Dement.: Transl. Res. Clin. Interventions. 5, 732-739 (2019) [CrossRef] [Google Scholar]
  • J. S. Kreutzer, J. DeLuca, B. Caplan. Encyclopedia of clinical neuropsychology (Springer, New York, 2011) [CrossRef] [Google Scholar]
  • T. H. Ferreira-Vieira, I. M. Guimaraes, F. R. Silva, F. M. Ribeiro. Alzheimer's disease: targeting the cholinergic system. Curr. Neuropharmacol. 14, 101-115 (2016) [CrossRef] [Google Scholar]
  • J. Liu, L. N. Wang, J. Z. Tian. Recognition of dementia in ancient China. Neurobiol Aging. 33, 2948.e11-13 (2012) [Google Scholar]
  • M.-J.R. Howes, J. Houghton. Etnobotanical treatment strategies againts Alzheimer’s disease. Curr. Alzheimer Res. 9, 67-85 (2012) [CrossRef] [Google Scholar]
  • S. Sepehri, M. Saeedi, B. Larijani, M. Mahdavi. Recent developments in the design and synthesis of benzylpyridinium salts: mimicking donepezil hydrochloride in the treatment of Alzheimer’s disease. Frontiers in Chemistry. 10 (2022) [CrossRef] [Google Scholar]
  • Suciati, D. Poerwantoro, A. Widyawaruyanti, K. Ingkaninan. Acetylcholinesterase inhibitory activity of extract and fractions from the root of Rauvolfia serpentina (L.) Bth.ex Kurz. J. Basic Clin. Phys. Pharmacol. 32, 313-317 (2021) [CrossRef] [Google Scholar]
  • J. A. Lima, L. Hamerski. Chapter 8 - alkaloids as potential multi-target drugs to treat Alzheimer's disease. Stud. Nat. Prod. Chem. 61, 301-334 (2019) [CrossRef] [Google Scholar]
  • F. Ahmed, R. M. Ghalib, P. Sasikala, K. K. Ahmed. Cholinesterase inhibitors from botanicals. Pharmacogn. Rev. 7, 121-130 (2013) [CrossRef] [PubMed] [Google Scholar]
  • H. O. Tayeb, H. D. Yang, B. H. Price, F. I. Tarazi. Pharmacotherapies for Alzheimer's disease: beyond cholinesterase inhibitors. Pharmacol. Ther. 134, 8-25 (2012) [CrossRef] [Google Scholar]
  • F. Ramadani. Aktivitas antioksidan, total tanin ekstrak dan fraksi daun sirih merah (Piper crocatum) dan identifikasi dengan LC-MS, Bachelor thesis, Institut Pertanian Bogor, Indonesia (2018) [Google Scholar]
  • R. Septiani. Ekstral dan fraksi daun sirih merah (Piper crocatum Ruiz & Pav) sebagai antioksidan dengan metode 2,2-difenil-1-pikrilhidrazil, Bachelor thesis, Institut Pertanian Bogor, Indonesia (2017) [Google Scholar]
  • A. B. S. Lestari. Y. Dwiatmaka. Aktivitas antioksidan ekstrak daun sirih merah (Piper crocatum) hasil optimasi pelarut etanol-air. JIFI. 12, 75-79 (2014) [Google Scholar]
  • Krisdianty. Aktivitas antioksidan ekstrak dan fraksi daun sirih merah (Piper crocatum) dengan metode ferric reducing antioxidant power, Bachelor thesis, Institut Pertanian Bogor, Indonesia (2019) [Google Scholar]
  • P.J. Puspita, M. Safithri, N. P. Sugiharti. Antibacterial activities of sirih merah (Piper crocatum) leaf extracts. Curr. Biochem. 5, 1-10 (2018) [Google Scholar]
  • D. A. P. Suci. Potensi antikanker ekstrak daun sirih merah (Piper crocatum) terhadap sel HeLa, Bachelor thesis, Institut Pertanian Bogor, Indonesia (2014) [Google Scholar]
  • A. Fitriyani, L. Winarti, S. Muslichah, Nuri. Uji antiinflamasi ekstrak metanol daun sirih merah (Piper crocatum Ruiz & Pav) pada tikus putih. Majalah Obat Tradisional. 16, 3442 (2011) [Google Scholar]
  • M. Safithri, S. Yasni, M. Bintang, A. S. Ranti. Toxicity study of antidiabetics functional drink of Piper crocatum and Cinnamomum burmannii. HAYATI J. Biosci. 19, 31-36 (2012) [CrossRef] [Google Scholar]
  • M. Soheili, M. Karimian, G. Hamidi, M. Salami. Alzheimer’s disease treatment: the share of herbal medicines. Iran J. Basic Med. Sci. 24, 123-135 [Google Scholar]
  • M. Alfarabi, M. Bintang, Suryani, M. Safithri. The comparative ability of antioxidant activity of Piper crocatum in inhibiting fatty acid oxidation and free radical scavenging. HAYATI J. Biosci. 17, 201-204 (2010) [CrossRef] [Google Scholar]
  • [BSN] Badan Standardisasi Nasional. SNI 01-3182-1992 tentang Penentuan Kadar Air (Badan Standardisasi Nasional, Jakarta, 1992) [Google Scholar]
  • I. Firdausi, R. Retnowati, Sutrisno. Fraksinasi ekstrak metanol daun mangga kasturi (Mangifera casturi Kosterm) dengan pelarut n-butanol. Kimia Stud. J. 1, 785-790 (2015) [Google Scholar]
  • E. S. Sulasmi, S. E. Indriwati, E. Suarsini. Preparation of various type of medicinal plants simplicia as material of jamu herbal, in International Conference on Education, Universitas Negeri Malang, Malang, Indonesia, November (2016). [Google Scholar]
  • R. M. Yasi, R. S. Harsanti, T. T. Larasati. The effect of simplicia drying method on the scquisition of active compound levels of grinting grass simplicia extract (Cynodon dactylon(L.) Pers.). Berkala Sainstek. 10, 147-154 (2022) [CrossRef] [Google Scholar]
  • [Kemenkes] Kementerian Kesehatan Republik Indonesia. Farmakope Herbal Indonesia (Kementerian Kesehatan Republik Indonesia, Jakarta, 2017) [Google Scholar]
  • R. F. Rosmi. The effect of drying method on Turmeric Rhizome simplicia quality. 1, 248-256 (2021) [Google Scholar]
  • M. Salim, N. Sulistyaningrum, A. Isnawati, H. Sitorus, Yahya, T. Ni’mah. Karakterisasi simplicia dan ekstrak kulit buah duku (Lansium domesticum Corr) dari Provinsi Sumatera Selatan dan Jambi. Jurnal Kefarmasian Indonesia. 6, 117-128 (2016) [Google Scholar]
  • D. Singh, V. Singh. Isolation and characterization of flavonoids in urena lobata leaves. European Journal of Medicinal Plants. 11, 1-6 (2016) [CrossRef] [Google Scholar]
  • S. M. Kamel. H. A. Thabet, E. A. Algadi. Influence of drying process on the functional properties of some plants. Chem. Mater. Res. 3, 1-9 (2013) [Google Scholar]
  • R. Y. Asworo. H. Widwiastuti. Pengaruh ukuran serbuk simplicia dan waktu maserasi terhadap aktivitas antioksidan ekstrak kulit sirsak. Indonesian Journal of Pharmaceutical Education. 3, 256-263 (2023) [Google Scholar]
  • A. N. Adham. Comparative extraction methods, phytochemical constituents, fluorescence analysis and HPLC validation of rosmarinic acid content in Mentha piperita, Mentha longifolia and Osimum basilicum. J. Pharmacogn. Phytochem. 3, 130139 (2015) [Google Scholar]
  • Q. W. Zhang, L. G. Lin, W. C. Ye. Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med. 13 (2018) [Google Scholar]
  • B. Rahmanto, W. Halwany, F. Lestari, K. Anwar, L. Triyasmono, M. I. Rizki, M. Turjaman. Characterization of ethanol extract from agarwood (Aquilaria microcarpa Baill.) Leaf. J. Jamu Indonesia. 3, 68-74 (2018) [CrossRef] [Google Scholar]
  • S. Kumowal, F. Fatimawali, I. Jayanto. Uji aktivitas antibakteri nanopartikel ekstrak lengkuas putih (Alpinia galanga (L.) Willd) terhadap bakteri Klebsiella pneumoniae. PHARMACON. 8, 781-790 (2019) [CrossRef] [Google Scholar]
  • C. Y. Leong, L. S. Chua. Optimization of concentrating process using rotary vacuum evaporation for pineapple Juice. Chem. Eng. Transact. 78, 7-12 (2012) [Google Scholar]
  • E. S. Syamsul, O. Anugerah, R. Supriningrum. Penetapan rendemen ekstrak daun jambu mawar (Syzygium jambos L. Alston) berdasarkan variasi konsentrasi etanol dengan metode maserasi. JRKI. 2, 147-157 (2020) [CrossRef] [Google Scholar]
  • A. V. Rao. Phytochemicals - A Global Perspective of Their Role in Nutrition and Health (IntechOpen, Rijeka, 2012) [CrossRef] [Google Scholar]
  • A. Gori, B. Boucherle, A. Rey, M. Rome, N. Fuzzati, M. Peuchmaur. Development of an innovative maceration technique to optimize extraction and phase partition of natural products. Fitoterapia. 148, 1-28 (2021) [Google Scholar]
  • F. Chairunisa, M. Safithri, M. Bintang. Antibacterial Activity of Ethanol Extract of Red Betel Leaves (Piper crocatum) and Its Fractions against Escherichia coli pBR322. Curr. Biochem. 9 (2022) [Google Scholar]
  • M. Johannsson, J. Snaedal, G. H. Johannesson, T. E. Gudmundsson, K. Johnsen. The acetylcholine index: an electroencephalographic marker of cholinergic activity in the living human brain applied to Alzheimer’s disease and other dementias. Dement. Geriatric Cognitive Disord. 39, 132-142 (2015) [CrossRef] [PubMed] [Google Scholar]
  • S. F. Cavalcante, A. B. C. Simas, M. C. Barcellos, V. G. M. Oliveira, R. B. Sousa, P. A. Cabral, K. Kuca, T. C. C. Franca. Acetylcholinesterase: the “hub” for neurodegenerative diseases and chemical weapons convention. Biomolec. 10, 414 (2020) [CrossRef] [Google Scholar]
  • G. L. Ellman, D. Courtney, V. Andreas, R. M. Featherston. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-89 (1961) [CrossRef] [Google Scholar]
  • L. J. Saunders, R. A. Russell, D. P. Crabb. The coefficient of determination: what determines a userful R2 statistic?. Investigative Ophthalmology & Vis. Sci. 53, 68306832 (2012) [Google Scholar]
  • S. Aykul, E. Martinez-Hackert. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Analyt. Biochem. 508, 97-103 (2017) [Google Scholar]
  • N. A. Pratima, R. Gadikar. Liquid chromatography-mass spectrometry and its applications: A brief review. Arch. Org. Inorg. Chem. Sci. 1 (2018) [Google Scholar]
  • W. Zhang, R. Sharma, M. W. Li, X. Fan. Retention time trajectory matching for peak identification in chromatographic analysis. Sensors. 23, 6029 (2023) [CrossRef] [Google Scholar]
  • J. Kaur, V. Dhiman, S. Bhadada, O. P. Katare, G. Ghoshal. LC/MS guided identification of metabolites of different extracts of Cissus quadrangularis. Food Chem. Adv. 1 (2022) [Google Scholar]
  • M. Anugrahwati, T. Purwaningsih, Rustina, J.A. Manggalarini, N.B. Alnavis, D. N. Wulandari, H. D. Pranowo. Extraction of ethanolic extract of red betel leaves and its cytotoxicity test on HeLa cells. Procedia Eng. 148, 1402-1407 (2022) [Google Scholar]
  • Weni, M., Safithri, M., Seni, DSH. 2020. Molecular docking of active compounds Piper crocatum on the alpha-glucosidase enzyme as antidiabetic. Indonesian J. Pharm. Sci. Tech. 7, 64-72 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.