Open Access
Issue |
BIO Web Conf.
Volume 125, 2024
The 10th International Conference on Agricultural and Biological Sciences (ABS 2024)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 10 | |
Section | Food Science and Technology | |
DOI | https://doi.org/10.1051/bioconf/202412502003 | |
Published online | 23 August 2024 |
- PerkinElmer. Atomic Spectroscopy A Guide to Selecting the Appropriate Technique and System. https://resources.perkinelmer.com/corporate/pdfs/downloads/bro_worldleaderaaicpmsicpms.pdf [Google Scholar]
- H. Xiandeng, T. J. Bradley, Inductively coupled plasma/optical emission spectrometry. Enc. Anal Chem. (2000) https://edisciplinas.usp.br/mod/resource/view.php?id=2334645 [Google Scholar]
- C. Douvris, T. Vaughan, D. Bussan, G. Bartzas, R. Thomas, How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Sci. Total Environ. 905. 167242 (2023). https://doi.org/10.1016/j.scitotenv.2023.167242 [CrossRef] [Google Scholar]
- M. A. Szymczycha, M. Welna, D. Jedryczko, P. Pohl, Developments and strategies in the spectrochemical elemental analysis of fruit juices. Trends Analyt. Chem. 55, 68–80 (2014) https://doi.org/10.1016/j.trac.2013.12.005 [Google Scholar]
- Codex Alimentarius, General Standard for Fruit Juices and Nectars (2022) https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B247-2005%252FCXS_247e.pdf [Google Scholar]
- M. Anastácio, A. P. M. Dos Santos, M. Aschner, L. Mateus, Determination of trace metals in fruit juices in the Portuguese market. Toxicol. Reports, 5, 434–439 (2018) https://doi.org/10.1016/j.toxrep.2018.03.010 [Google Scholar]
- S. Kılıç, S. Yenisoy-Karakaş, M. Kılıç, Metal contamination in fruit juices in Turkey: method validation and uncertainty budget. 121, 107588 (2015) https://doi.org/10.1016/j.foodcont.2020.107588 [Google Scholar]
- Z. Ajtony, N. Szoboszlai, K. E. Susko, P. Mezei, K. Gyorgy, L. Bencs, L. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Talanta, 76, 627–634 (2008) https://www.sciencedirect.com/science/article/pii/S0039914008002658 [Google Scholar]
- F. Mehri, H. Ali, T. G. Elaheh, M. Trias, F. Yadolah, Concentration of heavy metals in traditional and industrial fruit juices. Biol. Trace Element Res. (2024) https://doi.org/10.1007/s12011-023-04049-5 [Google Scholar]
- R. T. Godebo, S. Hannah, P. Madeline, T. Hadley, A. Julia, C. Leah, G. Liam, C. Will, D. Oona, J. Madison, C. Kalista, S. Danny, G. Evan, D. Hayden, P. Nati, T. Aaron, V. G. Sandra, H. Eames, Toxic metals and essential elements contents in commercially available fruit juices and other non-alcoholic beverages from the United States. J. Food Comp. Anal., 119, 105230 (2023) https://doi.org/10.1016/j.jfca.2023.105230 [CrossRef] [Google Scholar]
- R. F. Milani, M. A. Morgano, S. Cadore, A simple and reliable method to determine 16 trace elements by ICP OES in ready to drink beverages. Food Anal. Methods, 11, 1763–1772 (2018) https://doi.org/10.1007/s12161-018-1172-7 [CrossRef] [Google Scholar]
- O. L. A. D. Zucchi, M. Silvana, J. S. Marcos, L. S. Leandro, Multielement analysis of soft drinks by X-ray fluorescence spectrometry. J. Agric. Food Chem., 53, 7863–7869 (2005) https://doi.org/10.1021/jf0510945 [CrossRef] [PubMed] [Google Scholar]
- G. Lai, G. Chen, T. Chen, Speciation of AsIII and AsV in fruit juices by dispersive liquid–liquid microextraction and hydride generation-atomic fluorescence spectrometry. Food Chem. 190, 158–163 (2016) https://doi.org/10.1016/j.foodchem.2015.05.052 [CrossRef] [PubMed] [Google Scholar]
- M. M. Amer, B. A. Sabry, D. A. Marrez, A. S. Hathout, A. S. M. Fouzy, Exposure assessment of heavy metal residues in some Egyptian fruits. Toxicol. Rep. 6, 538–543 (2019) https://doi.org/10.1016/j.toxrep.2019.06.007 [Google Scholar]
- D. S. Velimirović, S. S. Mitić, S. B. Tošić, B. M. Kaličanin, A. N. Pavlović, M. N. Mitić, Levels of Major and Minor Elements in Some Commercial Fruit Juices Available in Serbia. Tropical Journal of Pharmaceutical Research, 12, 805–811 (2013) http://dx.doi.org/10.4314/tjpr.v12i5.22 [Google Scholar]
- M. Morvaridi, S. M. Sorouraddin, M. R. Afshar, Development of ligandless dispersive micro-solid-phase extraction method based on NH2-UiO-66 (Zr) MOF using DES eluent in determination of Cd(II) and Cu(II) ions in water and fruit juice samples. International Journal of Environmental Anal. Chem. (2023) https://doi.org/10.1080/03067319.2023.2291143 [Google Scholar]
- F. Mohamed, D. Guillaumed, N. Abdulwalie, K. Al-Hadramif, M.A.A. Maqtari, ICPOES assisted determination of the metal content of some fruit juices from Yemen’s market. Heliyon, 6, 04908 (2020) https://doi.org/10.1016/j.heliyon.2020.e04908 [Google Scholar]
- P. Chaikhan, Y. Udnan, R. J. Ampiah-Bonney, W. C. Chaiyasith, Air-assisted solvent terminated dispersive liquid–liquid microextraction (AA-ST-DLLME) for the determination of lead in water and beverage samples by graphite furnace atomic absorption spectrometry. Microchem. J., 162, 105828 (2021) https://doi.org/10.1016/j.microc.2020.105828 [CrossRef] [Google Scholar]
- S. I. R. Franke, D. Prá, R. Giulian, J. F. Dias, M. L. Yoneama, J. Da Silva, B. Erdtmann, J. A. P., Influence of orange juice in the levels and in the genotoxicity of iron and copper. Food Chem. Toxicol. 44, 425–435 (2006) https://doi.org/10.1016/j.fct.2005.08.016 [CrossRef] [Google Scholar]
- M. Hossain, D. Karmakar, S. N. Begum, S. Y. Ali, P. K. Patra, Recent trends in the analysis of trace elements in the field of environmental research: A review. Microchem. J. 165, 106086 (2021) https://doi.org/10.1016/j.microc.2021.106086 [CrossRef] [Google Scholar]
- AgilentTechnologies. Handbook of Hyphenated ICP-MS Applications (2015) https://www.agilent.com/cs/library/applications/5990-9473EN_icpmsSpeciationHB_lr.pdf [Google Scholar]
- C. Schmitz, I. M. Grambusch, L. D. Neutzling, L. Hoehne, and D. S. C. F. Volken, A systematic review and meta-analysis of validated analytical techniques for the determination of total selenium in foods and beverages. Food Chem., 429, 136974 (2023) https://doi.org/10.1016/j.foodchem.2023.136974 [CrossRef] [PubMed] [Google Scholar]
- S. R. Khan, B. Sharma, P. A. Chawla, R. Bhatia, Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): a powerful analytical technique for elemental analysis. Food Anal Method, 15, 666–688 (2022) https://doi.org/10.1007/s12161-021-02148-4 [CrossRef] [Google Scholar]
- Z. Wang, X. Wang, Q. Wang, X. Xiong, H. Luo, K. Huang, Recent developments in chemical vapor generation atomic spectrometry for zinc detection. Microchem. J. 149, 104052 (2019) https://doi.org/10.1016/j.microc.2019.104052 [CrossRef] [Google Scholar]
- L. Li, C. Jiang, J. Xiao, H. Luo, S. Zhang, Z. Zou, K. Huang, Applications of photochemical vapor generation-analytical atomic spectrometry for the speciation analysis of arsenic, mercury and selenium. Spectrochim. Acta Part B: At. Spectrosc. 199, 106579 (2023) https://doi.org/10.1016/j.sab.2022.106579 [Google Scholar]
- Analytikjena Group. Fundamentals, Instrumentation and Techniques of Atomic Absorption Spectrometry. https://sainttech.lv/pdf/science/Atomu%20absrobcijas%20spektrometrijas%20pamati.pdf [Google Scholar]
- D. J. Butcher, Innovations and developments in graphite furnace atomic absorption spectrometry. Appl. Spectrosc. Rev. 58, 65–82 (2023) https://doi.org/10.1080/05704928.2021.1919896 [CrossRef] [Google Scholar]
- R. D. Beaty, and J. D. Kerber, Concepts, Instrumentation and Techniques in Atomic Absorption Spectrophotometry, (Perkin-Elmer Cooporation, USA, 1991) [Google Scholar]
- A. Marco, G. Mercedes, V. Miguel, Determination of selenium in fruit juices by flow injection electrothermal atomization atomic absorption spectrometry. J. Anal. At. Spectrom. 9, 657–662 (1994) https://doi.org/10.1039/JA9940900657 [CrossRef] [Google Scholar]
- A. P. Oliveira, J. A. G. Neto, J. A. Nóbrega, P. R. M. Correia, P. V. Oliveira, Determination of selenium in nutritionally relevant foods by graphite furnace atomic absorption spectrometry using arsenic as internal standard. Food Chem., 355–360 (2005) https://doi.org/10.1016/j.foodchem.2004.11.024 [CrossRef] [Google Scholar]
- I. N. Pasias, N. I. Rousis, A. K. Psoma, N. S. Thomaidis, Simultaneous or sequential multi-element graphite furnace atomic absorption spectrometry techniques: Advances within the last 20 years. 6, At. Spectrosc. 42, 310–327 (2021) https://www.researchgate.net/publication/356980255 [Google Scholar]
- S. Geisler, M. Okruss, H. Becker-Ross, M. D. Huang, N. Esser, S. Florek, Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry. Spectrochim. Acta Part B, 107, 11–16 (2015) https://www.sciencedirect.com/science/article/pii/S0584854715000543 [Google Scholar]
- I. M. Dittert, J. S. A. Silva, R. G. O. Araujo, A. J. Curtius, B. Welz, H. Becker-Ross, Direct and simultaneous determination of Cr and Fe in crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochim. Acta Part B, 64, 537–543 (2009) https://www.sciencedirect.com/science/article/pii/S0584854709000305 [Google Scholar]
- M. S. Luz, A. N. Nascimento, P. V. Oliveira, Fast emulsion-based method for simultaneous determination of Co, Cu, Pb and Se in crude oil, gasoline and diesel by graphite furnace atomic absorption spectrometry. Talanta, 115, 409–413 (2013) https://www.researchgate.net/publication/356980255 [Google Scholar]
- L. Bencs, O. Szakács, T. Kántor, I. Varga, G. Bozsai, Determination of chromium, molybdenum and vanadium dopants in bismuth tellurite optical crystals by multielement graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B, 55, 883–891 (2000) https://doi.org/10.1016/S0584-8547(00)00221-4 [Google Scholar]
- W. Slavin, D. C. Manning, G. R. Carnrick, The stabilized temperature platform furnace. At. Spectrosc. 2, 137–145 (1981) [Google Scholar]
- P. Wu, S. He, B. Luo, X. Hou, Flame furnace atomic absorption spectrometry: A review. Appl. Spectrosc. Rev. 44, 411–437 (2009) https://doi.org/10.1080/05704920903018585 [CrossRef] [Google Scholar]
- P. T. Palmer, R. Jacobs, P. E. Baker, K. Ferguson, S. Webber, Use of field-portable XRF analyzers for rapid screening of toxic elements in FDA-regulated products. J. Agric. Food Chem. 57, 2605–2613 (2009) https://doi.org/10.1021/jf803285h [CrossRef] [PubMed] [Google Scholar]
- L. A. Malik, A. Bashir, A. Qureashi, A. H. Pandith, Detection and removal of heavy metal ions: a review. Environ. Chem. Lett. 17, 1495–1521 (2019) https://doi.org/10.1007/s10311-019-00891-z [CrossRef] [Google Scholar]
- M. A. Szymczycha, M. Welna, Evaluation of a simple and fast method for the multielemental analysis in commercial fruit juice samples using atomic emission spectrometry. Food Chem., 3466–3472 (2013) https://doi.org/10.1016/j.foodchem.2013.06.067 [CrossRef] [PubMed] [Google Scholar]
- S. X. Bao, Z. H. Wang, J. S. Liu, X-Ray fluorescence analysis of trace elements in fruit juice. Spectrochim. Acta Part B, 54, 1893–1897 (1999) https://doi.org/10.1016/S0584-8547(99)00160-3 [Google Scholar]
- C. Streli, P. Wobrauschek, P. Kregsamer, X-ray fluorescence spectroscopy, applications. Encyclop. Spectr. Spectr., 707–715 (2016) http://dx.doi.org/10.1016/B978-0-12-803224-4.00315-0 [Google Scholar]
- B. G. Beltrán, V. Ramos-Sanchez, D. Chávez-Flores, R. Rodríguez-Maese, E. Palacio, Total reflection X-ray fluorescence spectroscopy (TXRF) method validation: Determination of heavy metals in dietary supplements. J. Chem. (2020) https://doi.org/10.1155/2020/8817393 [Google Scholar]
- T. Cserfalvi, P. Mezei, P. Apai, Emission studies on a glow discharge in atmospheric pressure air using water as a cathode. J. Phys. D: Appl. Phys., 26, 2184 (1993) https://iopscience.iop.org/article/10.1088/0022-3727/26/12/015/meta [CrossRef] [Google Scholar]
- M. Gorska, and P. Pohl, Simplified and rapid determination of Ca, K, Mg, and Na in fruit juices by flowing liquid cathode atmospheric glow discharge optical emission spectrometry, J. Anal. At. Spectrom, 36, 1455 (2021) DOI: 10.1039/d1ja00127b [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.