Open Access
Issue
BIO Web Conf.
Volume 125, 2024
The 10th International Conference on Agricultural and Biological Sciences (ABS 2024)
Article Number 03004
Number of page(s) 12
Section Biological Science and Microbiology
DOI https://doi.org/10.1051/bioconf/202412503004
Published online 23 August 2024
  • D.K.M. Alves, M.B. Teixeira, F.N. Cunha, F.R. Cabral Filho, G.N. Cunha, C.L.L.D. Andrade, Grain yield of maize crops under nitrogen fertigation using wastewater from swine and fish farming. Agronomy 13(7):1834, (2023). [CrossRef] [Google Scholar]
  • M. Hungria, J.Z. Barbosa, A.B.L. Rondina, M.A. Nogueira, Improving maize sustainability with partial replacement of n fertilizers by inoculation with azospirillum brasilense. Agron. J. 114(5):2969–2980 (2022). DOI: https://doi.org/10.1002/agj2.21150. [CrossRef] [Google Scholar]
  • R. Bommarco, D. Kleijn, S.G. Potts, Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 28(4):230–238, (2013). DOI: https://doi.org/10.1016/j.tree.2012.10.012. [CrossRef] [Google Scholar]
  • S.H. Ji, M.A. Gururani, S. C. Chun, Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol. Res. 169(1):83–98, (2014). DOI: https://doi.org/10.1016/j.micres.2013.06.003. [CrossRef] [Google Scholar]
  • Y. Bashan, L.E. De-Bashan, Chapter two – how the plant growth-promoting bacterium azospirillum promotes plant growth—a critical assessment. Adv. Agron. 108: 77–136, (2010). [CrossRef] [Google Scholar]
  • A.M. Omer, M.S. Osman, A.A. Badawy, Inoculation with azospirillum brasilense and/or pseudomonas geniculata reinforces flax (linum usitatissimum) growth by improving physiological activities under saline soil conditions. Bot Stud 63(1):15, (2022). DOI: 10.1186/s40529-022-00345-w. [CrossRef] [PubMed] [Google Scholar]
  • Fukami, J.; P. Cerezini; and M. Hungria. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express 8(1):73, (2018) DOI: 10.1186/s13568-0180608-1. [CrossRef] [PubMed] [Google Scholar]
  • L.C. Dekkers, I.H.M. Mulders, C.C. Phoelich, T.F.C Chin-a-Woeng, A.H.M. Wijfjes, B. J. J. Lugtenberg, The SSS colonization gene of the tomato-fusarium oxysporum f. Sp. Radicis-lycopersici biocontrol strain pseudomonas fluorescens wcs365 can improve root colonization of other wild-type pseudomonas spp. Bacteria. Molecular Plant-Microbe Interactions® 2000, 13(11):1177–1183 DOI: 10.1094/mpmi.2000.13.11.1177. [CrossRef] [PubMed] [Google Scholar]
  • S. Samaddar, P. Chatterjee, A. Roy Choudhury, S. Ahmed, T. Sa, Interactions between pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol. Res. 219: 66–73, (2019) DOI: https://doi.org/10.1016/j.micres.2018.11.005. [CrossRef] [Google Scholar]
  • J. Hu, Z. Wei, S. Weidner, V. P. Friman, Y. C. Xu, Q. R. Shen, A. Jousset, Probiotic pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 113:122–129, (2017) DOI: https://doi.org/10.1016/j.soilbio.2017.05.029. [CrossRef] [Google Scholar]
  • R. Dinesh, M. Anandaraj, A. Kumar, Y.K. Bini, K.P. Subila, R. Aravind, Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res. 173:34–43 (2015), DOI: https://doi.org/10.1016/j.micres.2015.01.014. [CrossRef] [Google Scholar]
  • Z. Kong, H. Liu, Modification of rhizosphere microbial communities: A possible mechanism of plant growth promoting rhizobacteria enhancing plant growth and fitness. Fron. Plant Sci. 13 (2022), DOI: 10.3389/fpls.2022.920813. [Google Scholar]
  • S. Obana, K. Miyamoto, S. Morita, M. Ohmori, K. Inubushi, Effect of nostoc sp. on soil characteristics, plant growth and nutrient uptake. J. Appl. Phycol. 19(6):641–646 (2007), DOI: 10.1007/s10811-007-9193-4. [CrossRef] [Google Scholar]
  • L.P. Brüll, Z. Huang, J.E. Thomas-Oates, B.S. Paulsen, E.H. Cohen, T.E. Michaelsen. Studies of polysaccharides from three edible species of nostoc (cyanobacteria) with different colony morphologies: Structural characterization and effect on the complement system of polysaccharides from nostoc commune. J. Phycol. 36(5): 871881 (2000) DOI: https://doi.org/10.1046/j.1529-8817.2000.00038.x. [Google Scholar]
  • T. Cardona, N. Battchikova, P. Zhang, K. Stensjö, E.-M. Aro, P. Lindblad, A. Magnuson. Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium nostoc punctiforme. Biochim. Biophys. Acta 1787(4): 252–263, (2009) DOI: https://doi.org/10.1016/j.bbabio.2009.01.015. [CrossRef] [Google Scholar]
  • H. Katoh, J. Furukawa, K. Tomita-Yokotani, Y. Nishi. Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes. Biochim. Biophys. Acta 1817(8):1499–1505, (2012) DOI: https://doi.org/10.1016/j.bbabio.2012.02.039. [CrossRef] [Google Scholar]
  • K. Ranjan, H. Priya, B. Ramakrishnan, R. Prasanna, S. Venkatachalam, S. Thapa, R. Tiwari, L. Nain, R. Singh, Y.S. Shivay, Cyanobacterial inoculation modifies the rhizosphere microbiome of rice planted to a tropical alluvial soil. Appl. Soil Ecol. 108:195–203, (2016) DOI: https://doi.org/10.1016/j.apsoil.2016.08.010. [CrossRef] [Google Scholar]
  • T. Nawaz, S. Saud, L. Gu, I. Khan, S. Fahad, R. Zhou. Cyanobacteria: Harnessing the power of microorganisms for plant growth promotion, stress alleviation, and phytoremediation in the era of sustainable agriculture. Plant Stress 11:100399 (2024) DOI: https://doi.org/10.1016/j.stress.2024.100399. [CrossRef] [Google Scholar]
  • G.D. Farias, C. Bremm, C. Bredemeier, J. De Lima Menezes, L.A. Alves, T. Tiecher, A.P. Martins, G.P. Fioravanço, G.P. Da Silva, P.C. De Faccio Carvalho. Normalized difference vegetation index (ndvi) for soybean biomass and nutrient uptake estimation in response to production systems and fertilization strategies. Front. Sustain. Food Syst. 6, (2023) DOI: 10.3389/fsufs.2022.959681. [CrossRef] [Google Scholar]
  • R. R. R. Core Team, A language and environment for statistical computing. (2013) [Google Scholar]
  • S. Reinermann, S. Asam, C. Kuenzer. Remote sensing of grassland production and management—a review. Remote Sensing 12(12):1949, (2020). [CrossRef] [Google Scholar]
  • C. Atzberger, Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sensing 5(2): 949–981, (2013). [CrossRef] [Google Scholar]
  • A. Kior, V. Sukhov, E. Sukhova. Application of reflectance indices for remote sensing of plants and revealing actions of stressors. Photonics 8(12):582, (2021). [CrossRef] [Google Scholar]
  • S.K. Singh, X. Wu, C. Shao, H. Zhang. Microbial enhancement of plant nutrient acquisition. Stress Biol. 2(1): 3, (2022) DOI: 10.1007/s44154-021-00027-w. [CrossRef] [PubMed] [Google Scholar]
  • S. Saia, V. Rappa, P. Ruisi, M.R. Abenavoli, F. Sunseri, D. Giambalvo, A.S. Frenda, F. Martinelli. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Front. Plant Sci. 6, (2021). DOI: 10.3389/fpls.2015.00815. [Google Scholar]
  • R. Prasanna, F. Hossain, S. Babu, N. Bidyarani, A. Adak, S. Verma, Y.S. Shivay, L. Nain. Prospecting cyanobacterial formulations as plant-growth-promoting agents for maize hybrids of the article. South Afr. J. Plant Soil 32(4):199–207 (2015), DOI: 10.1080/02571862.2015.1025444. [CrossRef] [Google Scholar]
  • R. Kholssi, E.a.N. Marks, J. Miñón, A.P. Maté, G. Sacristán, O. Montero, A. Debdoubi, C. Rad. A consortium of cyanobacteria and plant growth promoting rhizobacteria for wheat growth improvement in a hydroponic system. S. Afr. J. Bot. 142: 247–258, (2021) DOI: https://doi.org/10.1016/j.sajb.2021.06.035. [CrossRef] [Google Scholar]
  • M. Manjunath, R. Prasanna, P. Sharma, L. Nain, R. Singh. Developing pgpr consortia using novel genera providencia and alcaligenes along with cyanobacteria for wheat. Arch. Agron. Soil Sci. 57(8):873–887 (2011) DOI: 10.1080/03650340.2010.499902. [CrossRef] [Google Scholar]
  • R. Prasanna, A. Kanchan, B. Ramakrishnan, K. Ranjan, S. Venkatachalam, F. Hossain, Y.S. Shivay, P. Krishnan, L. Nain. Cyanobacteria-based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids. Europ. J. Soil Biol. 75:15–23 (2016) DOI: 10.1016/j.ejsobi.2016.04.001. [CrossRef] [Google Scholar]
  • F.Z. Gavilanes, D. Souza Andrade, C. Zucareli, E.H. Horácio, J. Sarkis Yunes, A.P. Barbosa, L.a.R. Alves, L.G. Cruzatty, N.R. Maddela, M.D.F. Guimarães. Coinoculation of anabaena cylindrica with azospirillum brasilense increases grain yield of maize hybrids. Rhizosphere 15: 100224 (2020), DOI: https://doi.org/10.1016/j.rhisph.2020.100224. [CrossRef] [Google Scholar]
  • N.A. Di Benedetto, M.R. Corbo, D. Campaniello, M.P. Cataldi, A. Bevilacqua, M. Sinigaglia, Z. Flagella. The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: A focus on wheat. AIMS Microbiol 3(3):413–434 (2017) DOI: 10.3934/microbiol.2017.3.413. [CrossRef] [PubMed] [Google Scholar]
  • L. Reed, B.R. Glick. The recent use of plant-growth-promoting bacteria to promote the growth of agricultural food crops. Agriculture 13(5):1089 (2023). [CrossRef] [Google Scholar]
  • C. Pandey, S. Dheeman, D. Prabha, Y.K. Negi, D.K. Maheshwari. Plant growthpromoting bacteria: Effective tools for increasing nutrient use efficiency and yield of crops, In Endophytes: Mineral nutrient management, volume 3, D.K. Maheshwari and S. Dheeman, Editors. 2021, Springer International Publishing: Cham. p. 293–313 (2021) DOI: 10.1007/978-3-030-65447-4_13. [Google Scholar]
  • B. Nilde Antonella Di, C. Maria Rosaria, C. Daniela, C. Mariagrazia Pia, B. Antonio, S. Milena, F. Zina. The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: A focus on wheat. AIMS Microbiol. 3(3):413–434 (2017). DOI: 10.3934/microbiol.2017.3.413. [CrossRef] [PubMed] [Google Scholar]
  • L.M. Múnera-Porras, S. García-Londoño, L.A. Ríos-Osorio. Action mechanisms of plant growth promoting cyanobacteria in crops in situ: A systematic review of literature. Int. J. Agron. 2020: 2690410 (2020). DOI: 10.1155/2020/2690410. [Google Scholar]
  • V. Sharma, R. Prasanna, F. Hossain, V. Muthusamy, L. Nain, S. Das, Y.S. Shivay, A. Kumar. Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. 3 Biotech 10(4):154, (2020) DOI: 10.1007/s13205-0202141-6. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.