Open Access
Issue |
BIO Web Conf.
Volume 125, 2024
The 10th International Conference on Agricultural and Biological Sciences (ABS 2024)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 10 | |
Section | Biological Science and Microbiology | |
DOI | https://doi.org/10.1051/bioconf/202412503005 | |
Published online | 23 August 2024 |
- L.W.J. van den Elsen, H.C. Poyntz, L.S. Weyrich, W. Young, E.E. Forbes-Blom, Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clin. Transl. Immunol. 6, e125. (2017) https://doi.org/10.1038/cti.2016.91 [CrossRef] [Google Scholar]
- N. Canibe, M. O’Dea, S. Abraham, Potential relevance of pig gut content transplantation for production and research. J. Anim. Sci. Biotech. 10, 55. (2019) https://doi.org/10.1186/s40104-019-0363-4 [CrossRef] [Google Scholar]
- S. Amat, H. Lantz, P.M. Munyaka, B.P. Willing, Prevotella in pigs: the positive and negative associations with production and health. Microorganisms. 8, 1584. (2020) https://doi.org/10.3390/microorganisms8101584 [CrossRef] [PubMed] [Google Scholar]
- D. Zhang, H. Liu, S. Wang, W. Zhang, J. Wang, H. Tian, Y. Wang, H. Ji, Fecal microbiota and its correlation with fatty acids and free amino acids metabolism in piglets after a Lactobacillus strain oral administration. Front. Microbiol. 10, 785. (2019a) https://doi.org/10.3389/fmicb.2019.00785 [CrossRef] [Google Scholar]
- K. Ushida, S. Tsuchida, Y. Ogura, A. Toyoda, F. Maruyama, Domestication and cereal feeding developed domestic pig-type intestinal microbiota in animals of suidae. Anim. Sci. J. 87, 835–841. (2016) https://doi.org/10.1111/asj.12492 [CrossRef] [Google Scholar]
- P. Schierack, N. Walk, K. Reiter, K.D. Weyrauch, H.L. Wieler, Composition of intestinal Enterobacteriaceae populations of healthy domestic pigs. Microbiol. 153, 3830–3837. (2007) https://doi.org/10.1099/mic.0.2007/010173-0 [CrossRef] [PubMed] [Google Scholar]
- Y. Sato, Y. Kuroki, K. Oka, M. Takahashi, S. Rao, S. Sukegawa, T. Fujimura, Effects of dietary supplementation with Enterococcus faecium and Clostridium butyricum, either alone or in combination, on growth and fecal microbiota composition of postweaning pigs at a commercial farm. Front. Vet. Sci. 6, 26. (2019) https://doi.org/10.3389/fvets.2019.00026 [CrossRef] [Google Scholar]
- W. Yan, C. Sun, J. Zheng, C. Wen, C. Ji, D. Zhang, Y. Chen, Z. Hou, N. Yang, Efficacy of fecal sampling as a gut proxy in the study of chicken gut microbiota. Front. Microbiol. 10, 2126. (2019) https://doi.org/10.3389/fmicb.2019.02126 [CrossRef] [Google Scholar]
- W. Zhao, Y. Wang, S. Liu, J. Huang, Z. Zhai, C. He, J. Ding, J. Wang, H. Wang, W. Fan, J. Zhao, H. Meng, The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One. 10, e0117441. (2015) https://doi.org/10.1371/journal.pone.0117441 [CrossRef] [PubMed] [Google Scholar]
- J.A. Whelan, N.B. Russel, M.A. Whelan, A method for the absolute quantification of cDNA using real time PCR. J. Immunol. Meth. 278, 261–269. (2003) https://doi.org/10.1016/S0022-1759(03)00223-0 [CrossRef] [Google Scholar]
- Z. Fuller, P. Louis, A. Mihajlovski, V. Rungapamestry, B. Ratcliffe, A.J. Duncan, Influence of cabbage processing methods and prebiotic manipulation of colonic microflora on glucosinolate breakdown in man. Brit. J. Nutr. 98, 364–372. (2007) https://doi.org/10.1017/S0007114507709091 [CrossRef] [PubMed] [Google Scholar]
- D.M. Stevenson, P.J. Weimer, Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biot. 75, 165–174. (2007) https://doi.org/10.1007/s00253-006-0802-y [CrossRef] [PubMed] [Google Scholar]
- E. Malinen, A. Kassinen, T. Rinttila, A. Palva, Comparison of real-time PCR with SYBR Green I or 5′-nuclease assays and dot-blot hybridization with rRNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiol. 149, 269–277. (2003) https://doi.org/10.1099/mic.0.25975-0 [CrossRef] [PubMed] [Google Scholar]
- Z.T. Xiang, H.W. Qi, G.Q. Han, J. Liu, Z. Huang, B. Yu, Real-time TaqMan polymerase chain reaction to quantify the effects of different sources of dietary starch on Bifidobacterium in the intestinal tract of piglets. Afr. J. Biotechnol. 10, 5059–5067. (2011) [CrossRef] [Google Scholar]
- M. Castillo, S.M. Martín-Orúe, E.G. Manzanilla, I. Badiola, M. Martín, J. Gasa, Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet. Microbiol. 114, 165–170. (2006) https://doi.org/10.1016/j.vetmic.2005.11.055 [CrossRef] [Google Scholar]
- T. Rinttilä, A. Kassinen, E. Malinen, L. Krogius, A. Palva, Development of an extensive set of 16S rRNA-targeted primers for quantification of pathogenic and indigenous bacteria in fecal samples by real-time PCR. J. Appl. Microbiol. 97, 11661177. (2004) https://doi.org/10.1111/j.1365-2672.2004.02409.x [CrossRef] [PubMed] [Google Scholar]
- S.D. Jurburg, A. Bossers, Age matters: community assembly in the pig fecal microbiome in the first month of life. Front. Microbiol. 12, 564408. (2021) https://doi.org/10.3389/fmicb.2021.564408 [CrossRef] [Google Scholar]
- S. Ke, S. Fang, M. He, X. Huang, H. Yang, B. Yang, C. Chen, Age-based dynamic changes of phylogenetic composition and interaction networks of health pig gut microbiome feeding in a uniformed condition. BMC Vet. Res. 15, 172. (2019) https://doi.org/10.1186/s12917-019-1918-5 [CrossRef] [Google Scholar]
- Y. Liu, Zheng, Z., Yu, L., Wu, S., Sun, L., Wu, S., Xu, Q., Cai, S., Qin, N. and Bao, W., Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments. Sci. Rep. 9, 3453. (2019) https://doi.org/10.1038/s41598-019-40235-z [CrossRef] [Google Scholar]
- S.N. Heinritz, E. Weiss, M. Eklund, T. Aumiller, S. Louis, A. Rings, S. Messner, A. Camarinha-Silva, J. Seifert, C. Bischoff, R. Mosenthin, Intestinal microbiota and microbial metabolites are changed in a pig model fed a high-fat/low-fiber or a lowfat/high-fiber diet. PLoS One. 11, e0154329. (2016) https://doi.org/10.1371/journal.pone.0154329 [CrossRef] [PubMed] [Google Scholar]
- Z. Zhang, V. Mocanu, C. Cai, L. Slater, E.C. Deehan, J. Walter, K.L. Madsen, Impact of fecal microbiota transplantation on obesity and metabolic syndrome – a systematic review. Nutrients. 11, 2291. (2019b) https://doi.org/10.3390/nu11102291 [CrossRef] [PubMed] [Google Scholar]
- G.G. Han, J. Lee, G. Jin, J. Park, Y.H. Choi, S. Kang, B.J. Chae, E.B. Kim, Y. Choi, Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment. Sci. Rep. 8, 6012. (2018) https://doi.org/10.1038/s41598-018-24508-7 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.