Open Access
Issue
BIO Web Conf.
Volume 127, 2024
The International Conference and Workshop on Biotechnology (ICW Biotech 2024)
Article Number 01003
Number of page(s) 11
Section Agricultural Biotechnology for Food Improvement and Production
DOI https://doi.org/10.1051/bioconf/202412701003
Published online 13 September 2024
  • J. T. Jones, A. Haegeman, E. G. Danchin, H. S. Gaur, J. Helder, M. G. K. Jones, T. Kikuchi, R. M. López, J. E. P. Rius, W. M. L. Wesemael, R. N. Perry, Top 10 plantparasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14(9), 946–961 (2013). [CrossRef] [PubMed] [Google Scholar]
  • J. M. Nicol, S. J. Turner, D. L. Coyne, L. den Nijis, S. Hockland, Z. T. Maafi, Current nematode threats to world agriculture in Genomics and molecular genetics of plantnematode interactions. eds. J. Jones, G. Gheysen and C. Fenoll. Dordrecht: Springer. 21–43 (2011). [Google Scholar]
  • E. Sulistyowati, D. S. Rahayu, F. N. Aini, Aplikasi jamur Paecilomyces lillacinus untuk menginduksi ketahanan tanmaan kopi terhadap nematoda parasit, Pratylenchus coffea: Efektivitas jamur Paecilomyces lillacinus strain 251 terhadap nematoda parasit, Pratylenchus coffea. Prosiding InSINAS 2012. Page 145–148 (2012). [Google Scholar]
  • M. M. Inomoto, C. M. G. (n. d) Oliveira, Coffee-Associated Pratylenchus spp. – Ecology and Interactions with Plants. Plant-Parasitic Nematodes of Coffee. 51–64 (2008). [CrossRef] [Google Scholar]
  • S. Wiryadiputra, Keefektifan insektisida cyantraniliprole terhadap hama penggerek buah kopi (Hypothenemus hampei) pada kopi arabika (Effectiveness cyantraniliprole against coffee berry borer (Hypothenemus hampei)on arabica coffee. Pelita Perkebunan (a Coffee and Cocoa Research Journal). 28(2), 100–110 (2012). [CrossRef] [Google Scholar]
  • S. Wiryadiputra, Pengaruh bionematisida berbahan aktif jamur Paecilomyces lillacinus strain 251 terhadap serangan Pratylenchus coffeae pada kopi robusta. Jurnal Perlindungan Tanaman Indonesia. 8(1), 18–26 (2002). [Google Scholar]
  • H. A. Medeiros, R. S. Resende, F. C. Ferreira, L. G. Freitas, F. A. Rodrigues, Induction of resistance in tomato against Meloidogyne javanica by Pochonia chlamydosporia. Nematoda Journal. 2:e10015 (2015). [Google Scholar]
  • K. Eloh, N. Sasanelli, A. Maxia, P. Caboni, Untargeted metabolomics of tomato plants after root-knot nematode infestation. Journal of Agricultural and Food Chemistry. 64(29), 5963–5968 (2016). [CrossRef] [PubMed] [Google Scholar]
  • E. N. Afifah, R. H. Murti, T. R. Nuringtyas, Metabolomics approach for the analysis of resistance of four tomato genotypes (Solanum Lycopersicum L.) to root-knot nematodes (Meloidogyne incognita). Open Life Sci. 14(1), 141–149 (2019). [CrossRef] [PubMed] [Google Scholar]
  • E. Afifah, R. Murti, T. Nuringtyas, Comparison of metabolomics expression in the root and leaf of resistance and susceptible tomato against root-knot nematode. AGRIVITA, Journal of Agricultural Science. 42(3), 563–571 (2020). [CrossRef] [Google Scholar]
  • A. R. Machado, V. A. Campos, W. J. Silva, V. P. Campos, A. C. Zeri, D. F. Oliveira, Metabolic profiling in the roots of coffee plants exposed to the coffee root-knot nematode, Meloidogyne exigua. European Journal of Plant Pathology. 134, 431–441 (2012). [CrossRef] [Google Scholar]
  • T. Hankemeier, 2007, Medical system biology. In Abstracts Book. The 11th International Congress, Phytopharm. Leiden, The Netherlands. 20 (2007). [Google Scholar]
  • M. P. López-Gresa, F. Maltese, J. M. Belles Albert, V. Conejero, H. K. Kim, Y. H. Choi, R. Verpoorte, Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis. 21(1):89–94 (2010). [CrossRef] [PubMed] [Google Scholar]
  • C. Kushalappa, R. Gunnaiah, Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci. 18(9):522–531 (2013). [CrossRef] [PubMed] [Google Scholar]
  • M. Khizar, J. Shi, S. Saleem, F. Liaquat, M. Ashraf, S. Latif, U. Haroon, S. W. Hassan, S. Rehman, H. J. Chaudhary, U. M. Quraishi, M. F. H. Munis, Resistance associated metabolite profiling of Aspergillus leaf spot in cotton through non-targeted metabolomics. PLoS ONE. 15(2): e0228675 (2020). [CrossRef] [PubMed] [Google Scholar]
  • G. Baermann, Eine einfache methode zur auffindung von anklostomum (nematoden) larven in erdproben. Geneeskundig tijdschrift voor Nederlandsch-Indië. 57, 131–137 (1917). [Google Scholar]
  • K. Eloh, M. Demurtas, A. Deplano, A. Ngoutane Mfopa, A. Murgia, A. Maxia, V. Onnis, P. Caboni, In vitro nematicidal activity of aryl hydrazones and comparative GC-MS metabolomics analysis. J. Agric. Food Chem. 63, 9970–9976 (2015). [CrossRef] [PubMed] [Google Scholar]
  • S. N. O. Costa, M. V. T. E. Silva, J. M. Ribeiro, J. M. D. C. E. Castro, M. F. Muzitano, R. G. D. Costa, A. E. A. Oliveira, K. V. S. Fernandes, Secondary metabolites related to the resistance of Psidium spp. against the nematode Meloidogyneenterolobii. Heliyon. 9, 7 (2023). [Google Scholar]
  • W. Kang, X. Zhu, Y. Wang, L. Chen, Y. Duan, Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematode in soybean. BMC Plant Biol. 18, 86 (2018). [CrossRef] [PubMed] [Google Scholar]
  • W. Kang, L. Chen, Y. Wang, X. Zhu, X. Liu, H. Fan, Y. Duan, Bacillus simplex treatment promotes soybean defence against soybean cyst nematodes: A metabolomics study using GC-MS. Plos One. 15 (8), e0237194 (2020). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.