Open Access
Issue |
BIO Web Conf.
Volume 127, 2024
The International Conference and Workshop on Biotechnology (ICW Biotech 2024)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 11 | |
Section | Agricultural Biotechnology for Food Improvement and Production | |
DOI | https://doi.org/10.1051/bioconf/202412701008 | |
Published online | 13 September 2024 |
- L. Mobin, M.A. Haq, R. Ali, S. Naz, S.G. Saeed, Antibacterial and antioxidant potential of the phenolic extract and its fractions isolated from Allium ascalonicum (onion) peel. Nat. Pro. Res. 0, 1–5 (2021). https://doi.org/10.1080/14786419.2021.1948040 [Google Scholar]
- E.M. Lengbiye, C.M. Mbadiko, C.M. Falanga et al., Antiviral Activity, Phytochemistry and Toxicology of Some Medically Interesting Allium Species: A Mini Review. Int. J. pathog. 5, 64–77 (2020). https://doi.org/10.9734/ijpr/2020/v5i430145 [CrossRef] [Google Scholar]
- J.J Serfontein, Xanthomonas blight of onion in South Africa. Plant Dis. 85, 442–442 (2001). https://doi.org/10.1094/PDIS.2001.85.4.442A [CrossRef] [Google Scholar]
- P. Roumagnac, O. Pruvost, F. Chiroleu, G. Hughes, Spatial and Temporal analyses of bacterial of onion caused by Xanthomonas axonopodis pv. Allii. Phytopathology, 94, 138–146 (2004). https://doi.org/10.1094/PHYTO.2004.94.2.138 [CrossRef] [PubMed] [Google Scholar]
- L. Bortesi, R. Fisher, The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 33, 41–52 (2015). https://doi.org/10.1016/j.biotechadv.2014.12.006 [CrossRef] [PubMed] [Google Scholar]
- N.A. Abdallah, C.S. Prakash, A.G. McHughen, Genome editing for crop improvement: Challenges and opportunities. GM Crops Food. 6, 183–205 (2015). https://doi.org/ 10.1080/21645698.2015.1129937 [CrossRef] [PubMed] [Google Scholar]
- R. Mishra, K. Zhao, Genome editing technologies and their applications in crop. Plant Biotech. Rep. 12, 57–68 (2018). https://doi.org/10.1007/s11816-018-0472-0 [CrossRef] [Google Scholar]
- M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, E.A. Charpentier, Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 337, 816–821. (2012). https://doi.org/10.1126/science.1225829 [CrossRef] [PubMed] [Google Scholar]
- S.E. Mohr, Y. Hu, B. Ewen-Campen, B.E. Housden, R. Viswanatha, N. Perrimon, CRISPR guide RNA design for research applications. FEBS J. 283, 3232–3238 (2016). https://doi.org/10.1111/febs.13777 [CrossRef] [PubMed] [Google Scholar]
- A.V. Wright, J.K. Nunez, J.A. Doudna, Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell. 164, 29–44 (2016). https://doi.org/10.1016/j.cell.2015.12.035 [CrossRef] [PubMed] [Google Scholar]
- A.R. Gruber, R. Lorenz, S.H. Bernhart, R. Neubock, I.L. Hofacker, The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74. (2008). https://doi.org/10.1093/nar/gkn188 [CrossRef] [PubMed] [Google Scholar]
- R. Lorenz, S.H. Bernhart, C. Höner zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler, et al., Vienna RNA package 2.0. Algorith. Mol. Biol. 6, 26 (2011). https://doi.org/10.1093/nar/gkn188 [CrossRef] [Google Scholar]
- A.H. Mubarok, A. Sisharmini, A Apriana, T.J. Santoso, Suharsono. CRISPR/Cas9 Cassette Construction for OsARF2 Gene Editing and Development of Transgenic Rice Nipponbare Containing CRISPR/Cas9-OsARF2. J. AgroBiogen. 18, 45–56 (2022). [CrossRef] [Google Scholar]
- L.A. Gilbert, M.A. Horlbeck, B. Adamson, J.E. Villalta, Y. Chen, E.H. Whitehead, C. Guimaraes, B. Panning, H.L. Ploegh, M.C. Bassik, et al., Genome-scale CRISPRmediated control of gene repression and activation. Cell. 159, 647–66 (2014). https://doi.org/10.1016/j.cell.2014.09.029 [CrossRef] [PubMed] [Google Scholar]
- D.W.S. Wong, The ABCs of Gene Cloning, 2nd edition. Nucleic Acids Res. 42, Web Server issue W401–W407 (2014). https://doi.org/10.1093/nar/gku410 [CrossRef] [PubMed] [Google Scholar]
- J.G. Doench, E. Hartenian, D. B. Graham, Z. Tothova, M. Hegde, I. Smith, M. Sullender, B.L. Ebert, R.J. Xavier, D.E. Root, Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2004). https://doi.org/10.1038/nbt.3026. [Google Scholar]
- A.A.Md Yusof, A.A. Tamizi, N.A. Nurul Asyikin Mohd-Zim, S.S.A. Sattar, M.S. Salleh, N.S.A. Nur Azmi, Z. Zainal, Z. Zainuddin, N.N. Samsulrizal, Development of CRISPR/Cas9 Construct in Rice (Oryza sativa subsp. indica) Using Golden Gate Cloning Method Towards Drought Tolerance. JTLS. 13, 257–276. (2022). http://dx.doi.org/10.11594/jtls.13.02.04 [Google Scholar]
- K.C. Teck, J.M. Bujnicki, T.C. Tan, F. Huynh, B.K. Patel, J. Sivaraman. 2008. The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode. Plant Cell. 20 (4):1059–1072. http://doi:10.1105/tpc.107.051193. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.