Open Access
Issue
BIO Web Conf.
Volume 127, 2024
The International Conference and Workshop on Biotechnology (ICW Biotech 2024)
Article Number 04003
Number of page(s) 9
Section Integration of Nutrition, Food Security, and Vaccine Development
DOI https://doi.org/10.1051/bioconf/202412704003
Published online 13 September 2024
  • M. J. Grubman and B. Baxt, Foot-and-mouth disease. Clin Microbiol Rev 17, 465 (2004) [Google Scholar]
  • S. M. Jamal and G. J. Belsham, Foot-and-Mouth Disease: Past, Present and Future (2013) [Google Scholar]
  • M. Mahapatra and S. Parida, Foot-and-mouth disease vaccine strain selection : current approaches and future. Expert Rev Vaccines 17, 577 (2018) [CrossRef] [PubMed] [Google Scholar]
  • N. Zainuddin, E. B. Susila, H. Wibawa, R. S. D. Daulay, P. E. Wijayanti, D. Fitriani, D. N. Hidayati, S. Idris, J. Wadsworth, N. Polo, H. M. Hicks, V. Mioulet, N. J. Knowles, and D. P. King, Genome Sequence of a Foot-and-Mouth Disease Virus Detected in Indonesia in 2022. Microbiol Resour Announc 12, (2023) [CrossRef] [Google Scholar]
  • E. E. Fry, · D I Stuart, and D. J. Rowlands, The Structure of Foot-and-Mouth Disease Virus (Springer-Verlag, 2005) [Google Scholar]
  • N. J. Knowles and A. R. Samuel, Molecular Epidemiology of Foot-and-Mouth Disease Virus. Vir Res 91, 65 (2003) [CrossRef] [Google Scholar]
  • N. M. T. Le, K. K. So, J. Chun, and D. H. Kim, Expression of virus-like particles (VLPs) of foot-and-mouth disease virus (FMDV) using Saccharomyces cerevisiae. Appl Microbiol Biotechnol 108, 1 (2024) [CrossRef] [PubMed] [Google Scholar]
  • M. V. Mamabolo, J. Theron, F. Maree, and M. Crampton, Production of foot-and-mouth disease virus SAT2 VP1 protein. AMB Express 10, (2020) [CrossRef] [Google Scholar]
  • Z. Lu, S. Yu, W. Wang, W. Chen, X. Wang, K. Wu, X. Li, S. Fan, H. Ding, L. Yi, and J. Chen, Development of Foot-and-Mouth Disease Vaccines in Recent Years. Vaccines 10, (2022) [Google Scholar]
  • M. S. Bhutta, M. Awais, S. Sadaqat, F. B. Zanchi, N. Shahid, and A. Qayyum Rao, A novel immunoinformatics approach for developing a poly-epitope vaccine targeting foot and mouth disease virus, exploiting structural VP proteins. J Biomol Struct Dyn (2024) [Google Scholar]
  • L. L. Rodriguez and M. J. Grubman, Foot and mouth disease virus vaccines. Vaccine 27, (2009) [Google Scholar]
  • S. F. Li, M. J. Gong, Y. F. Sun, J. J. Shao, Y. G. Zhang, and H. Y. Chang, Molecules 24, (2019) [Google Scholar]
  • S. J. Cox, N. Aggarwal, R. J. Statham, and P. V Barnett, Longevity of Antibody and Cytokine Responses Following Vaccination with High Potency Emergency FMD Vaccines (2003) [Google Scholar]
  • J. Shao, W. Liu, S. Gao, H. Chang, and H. Guo, In vitro and in vivo antiviral activity of mizoribine against foot-and-mouth disease virus. Virology 596, (2024) [Google Scholar]
  • J. M. Gershoni, A. Roitburd-Berman, D. D. Siman-Tov, N. T. Freund, and Y. Weiss, Epitope mapping: The first step in developing epitope-based vaccines. BioDrugs 21, 145 (2007) [CrossRef] [PubMed] [Google Scholar]
  • V. Gnazzo, V. Quattrocchi, I. Soria, E. Pereyra, C. Langellotti, A. Pedemonte, V. Lopez, L. Marangunich, and P. Zamorano, Mouse model as an efficacy test for foot-and-mouth disease vaccines. Transbound Emerg Dis 67, 2507 (2020) [CrossRef] [PubMed] [Google Scholar]
  • S. Wagner, M. M. Klepsch, S. Schlegel, A. Appel, R. Draheim, M. Tarry, M. Hogbom, K. J. van Wijk, D. J. Slotboom, J. O. Persson, and J.-W. de Gier, Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105, 14371 (2008) [CrossRef] [PubMed] [Google Scholar]
  • G. Li, A. K. Wubshet, Y. Ding, Q. Li, J. Dai, Y. Wang, Q. Hou, J. Chen, B. Ma, A. Szczotka-Bochniarz, S. Szathmary, Y. Zhang, and J. Zhang, Antigenicity and immunogenicity analysis of the e. Coli expressed fmdv structural proteins; vp1, vp0, vp3 of the south african territories type 2 virus. Viruses 13, (2021) [Google Scholar]
  • E. R. LaVallie, E. A. DiBlasio, S. Kovacic, K. L. Grant, P. F. Schendel, and J. M. Mc.Coy, A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Nat Biotechnol 11, 187 (1993) [CrossRef] [Google Scholar]
  • Y. Xiao, H. Y. Chen, Y. Wang, B. Yin, C. Lv, X. Mo, H. Yan, Y. Xuan, Y. Huang, W. Pang, X. Li, Y. A. Yuan, and K. Tian, Large-scale production of foot-and-mouth disease virus (serotype Asia1) VLP vaccine in Escherichia coli and protection potency evaluation in cattle. BMC Biotechnol 16, (2016) [CrossRef] [Google Scholar]
  • H. T. Wong, S. C. S. Cheng, E. W. C. Chan, Z. T. Sheng, W. Y. Yan, Z. X. Zheng, and Y. Xie, Plasmids encoding foot-and-mouth disease virus VP1 epitopes elicited immune responses in mice and swine and protected swine against viral infection. Virology 278, 27 (2000) [CrossRef] [Google Scholar]
  • M. C. Van Lierop, J. E. P A Wagenaar, J. M. Van Noort, and E. J. Hensen, Sequences Derived from the Highly Antigenic VP1 Region 140 to 160 of Foot-and-Mouth Disease Virus Do Not Prime for a Bovine T-Cell Response against Intact Virus. J Virol 69 4511 (1995) [CrossRef] [PubMed] [Google Scholar]
  • P. I. Zamorano, A. Wigdorovitz, D. M. P. Filgueira, J. M. Escribano_F, A. M. Sadir, and M. V Borea, Induction of Anti Foot and Mouth Disease Virus T and B Cell Responses in Cattle Immunized with a Peptide Representing Ten Amino Acids of VP1. Vaccine 16 558 (1998) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.