Open Access
Issue
BIO Web Conf.
Volume 127, 2024
The International Conference and Workshop on Biotechnology (ICW Biotech 2024)
Article Number 06001
Number of page(s) 7
Section Synthetic Biotechnology for Enhanching Benefit and Production of Bioprospecting
DOI https://doi.org/10.1051/bioconf/202412706001
Published online 13 September 2024
  • C. K. Kramer, R. Retnakaran, and B. Zinman, Insulin and insulin analogs as antidiabetic therapy: A perspective from clinical trials. Cell Metabolism 33, 4 (2021). [Google Scholar]
  • S. Sreenivas et al., Enhancement in production of recombinant two-chain Insulin Glargine by over-expression of Kex2 protease in Pichia pastoris. Appl. Microbiol. Biotechnol. 99, 1 (2015). [Google Scholar]
  • D. Hardianto, et al., Cloning and extracellular expression of glargine in Pichia pastoris. Hayati J Biosci. 31, 2 (2024) [Google Scholar]
  • S. Polez et al., A simplified and efficient process for insulin production in Pichia pastoris. PLoS One, 11, 12 (2016). [Google Scholar]
  • P. Hazra et al., A novel peptide design aids in the expression and its simplified process of manufacturing of insulin glargine in Pichia pastoris. Appl. Microbiol. Biotechnol, 105, 8 (2021). [Google Scholar]
  • F. C. Sekaringtyas et al., Transformation and characterization of human insulin precursor gene in Pichia pastoris X-33,” in Proceedings of the 4th International Conference on Biosciences, Bogor, Indonesia, August 11-12 (2021). [Google Scholar]
  • J. L. Cereghino and J. M. Cregg, Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 1 (2000). [Google Scholar]
  • M. Ahmad, M. Hirz, H. Pichler, and H. Schwab, Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 98, 12 (2014). [Google Scholar]
  • H. Raschmanová et al., Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins. Appl. Microbiol. Biotechnol. 105, 11 (2021). [Google Scholar]
  • J. W. Moser et al., Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris. Microb. Cell Fact. 16, 1 (2017). [CrossRef] [Google Scholar]
  • A. Turner, D. M. Lanser, and A. Gelli, Optimized Expression and Isolation of Recombinant Active Secreted Proteases Using Pichia pastoris. Bio-protocol 13, 5 (2023). [CrossRef] [Google Scholar]
  • N. Kaushik, U. Lamminmäki, N. Khanna, and G. Batra. Enhanced cell density cultivation and rapid expression-screening of recombinant Pichia pastoris clones in microscale. Sci. Rep. 10, 1 (2020). [CrossRef] [Google Scholar]
  • A. Prabhu, B. Mandal, and V. V. Dasu. Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: A statistical optimization and neural network-based approach. Korean J. Chem. Eng. 34, 4 (2017). [Google Scholar]
  • M. Fasihi, S. S. Rahpeyma, A. A. Karkhanei, and J. Raheb, Optimization of synthetic glucose oxidase gene using a recombinant combination strategy in Pichia Pastoris GS115. J. Sci. Islam. Repub. Iran 33, 1 (2022). [Google Scholar]
  • D. Weinacker, C. Rabert, A. B. Zepeda, C. A. Figueroa, A. Pessoa, and J. G. Farías, Applications of recombinant Pichia pastoris in the healthcare industry. Brazilian J. Microbiol. 44, 4 (2013). [Google Scholar]
  • R. Aw and K. M. Polizzi, Can too many copies spoil the broth? Microb. Cell Fact. 12, 1 (2013). [CrossRef] [Google Scholar]
  • W. Zhang, M. Inan, and M. M. Meagher, Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris. Biotechnol. Bioprocess Eng. 5, 4 (2000). [Google Scholar]
  • A. Rahimi, A. Karimi, S. N. Hosseini, H. Aghdasinia, and R. A. Mianroodi, Implementing chemostat fermentation of Pichia pastoris producing recombinant hbsag to optimize cell density affected by methanol rate. Biointerface Res. Appl. Chem. 11, 5 (2021). [Google Scholar]
  • G. D. Barone et al., Industrial Production of Proteins with Pichia pastorisKomagataella phaffii. Biomolecules 13, 3 (2023). [Google Scholar]
  • Y. S. Zhang, J. S. Gong, J. Y. Jiang, Z. H. Xu, and J. S. Shi, Engineering protein translocation and unfolded protein response enhanced human PH-20 secretion in Pichia pastoris. Appl. Microbiol. Biotechnol. 108, 1 (2024). [CrossRef] [PubMed] [Google Scholar]
  • S. Eissazadeh, H. Moeini, M. G. Dezfouli, S. Heidary, R. Nelofer, and M. P. Abdullah, Production of recombinant human epidermal growth factor in Pichia pastoris. Brazilian J. Microbiol. 48, 2 (2017). [Google Scholar]
  • Z. Rosenbergová, Z. Hegyi, M. Ferko, N. Andelová, and M. Rebroš, Improved production of recombinant myrosinase in Pichia pastoris. Int. J. Mol. Sci. 22, 21 (2021). [Google Scholar]
  • X. Wang et al., Combined strategies for the improvement of heterologous expression of a his-tagged Yarrowia lipolytica lipase Lip2 in Pichia pastoris. African J. Biotechnol. 10, 80 (2011). [Google Scholar]
  • S. H. Wang, T. S. Yang, S. M. Lin, M. S. Tsai, S. C. Wu, and S. J. T. Mao, Expression, characterization, and purification of recombinant porcine lactoferrin in Pichia pastoris. Protein Expr. Purif. 25, 1 (2002). [CrossRef] [Google Scholar]
  • J. Krahulec and M. Šafránek, Impact of media components from different suppliers on enterokinase productivity in Pichia pastoris. BMC Biotechnol. 21, 1 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Z. F. Shang, D. D. Fan, J. J. Deng, P. Ma, X. Ma, and Y. Mi, Optimization of fermentation medium for cell yield of recombinant Pichia pastoris during growth stage using response surface methodology. J. Pure Appl. Microbiol. 7, 2 (2013). [Google Scholar]
  • S. Azadi, A. Mahboubi, N. Naghdi, R. Solaimanian, and S. A. Mortazavi, “Evaluation of sorbitol-methanol co-feeding strategy on production of recombinant human growth hormone in Pichia pastoris. Iran. J. Pharm. Res. 16, 4 (2017). [CrossRef] [Google Scholar]
  • E. A. L. Aizemberg et al., Recombinant glycerol kinase production by P. pastoris. Food Technol. Biotechnol. 49, 3 (2011). [Google Scholar]
  • D. Palmerín-Carreño et al., Optimization of a recombinant lectin production in Pichia pastoris using crude glycerol in a fed-batch system. Processes 9, 5 (2021). [Google Scholar]
  • A. Gatignol, H. Durand, and G. Tiraby, Bleomycin resistance conferred by a drugbinding protein. FEBS Lett. 230, 1 (1988). [Google Scholar]
  • D. Drocourt et al., Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res. 18, 13 (1990). [Google Scholar]
  • D. Hardianto et al., Detection of recombinant Pichia pastoris producing glargine, in Proceedings of the 5th International Conference on Biosciences, Bogor, Indonesia, August 2-3 (2023). [Google Scholar]
  • D. A. Peña, B. Gasser, J. Zanghellini, M. G. Steiger, and D. Mattanovich, Metabolic engineering of Pichia pastoris. Metab. Eng. 50, (2018). [Google Scholar]
  • Y. Pan, J. Yang, J. Wu, L. Yang, and H. Fang, Current advances of Pichia pastoris as cell factories for production of recombinant proteins, Front. Microbiol. 13, (2022). [Google Scholar]
  • H. Rußmayer et al., Systems-level organization of yeast methylotrophic lifestyle, BMC Biol. 13, 1 (2015). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.