Open Access
Issue
BIO Web Conf.
Volume 130, 2024
International Scientific Conference on Biotechnology and Food Technology (BFT-2024)
Article Number 03004
Number of page(s) 10
Section Water Environmental Biotechnology
DOI https://doi.org/10.1051/bioconf/202413003004
Published online 09 October 2024
  • V.E. Chub, Izmenenie klimata i ego vliyanie na prirodno-resursnyi potentsial Respubliki Uzbekistan (Tashkent: SANIGMI, 2000). [Google Scholar]
  • P. Micklin, The Aral Sea crisis, Dying and dead seas climatic versus anthropic causes. Dord: Sprin.Neth. 99-123 (2004). [CrossRef] [Google Scholar]
  • A.K. Kurbaniyazov, Evolyutsiya landshaftov obsokhshego dna Aral’skogo morya: monografiya (Izdatel’skii dom Akademii Estestvoznaniya, 2017). [Google Scholar]
  • V.I. Binenko, V.A. Ivanov, V.G. Lebedinov, Aerozol’no-radiatsionnye izmereniya v Priaral’e. Tr.GGO. 462, 37–43 (1982). [Google Scholar]
  • A.S. Ginzburg, D.P. Gubanova, V.M. Minashkin, Ros. khim. zh. 5, 112-119 (2008). [Google Scholar]
  • J. E. Penner, C.C. Chuang, K. Grant, Clim.Dynam. 14, 839-851 (1998). [CrossRef] [Google Scholar]
  • G. Myhre, F. Stordal, K. Restad, I.S. Isaksen, Estimation of the direct radiative forcing due to sulfate and soot aerosols. Tell.B. 50(5), 463-477 (1998). [CrossRef] [Google Scholar]
  • J. T. Kiehl, T. L. Schneider, P. J. Rasch, M. C. Barth, J. Wong, Jour. of Geoph.Res.: Atmos. 105(D1), 1441-1457 (2000). [CrossRef] [Google Scholar]
  • P. J. Adams, J. H. Seinfeld, D. M. Koch, Jour. of Geoph.Res.: Atmos. 104 (D11), 13791-13823 (1999) [CrossRef] [Google Scholar]
  • K.V. Kuvshinova, Klimat Priaral’ya i ego vozmozhnye izmeneniya v svyazi s usykhaniem morya, Pogodoobrazuyushchie faktory i ikh rol’ v bioklimatologii, MFGO SSSR. 17-27 (1980). [Google Scholar]
  • B.S. Tleumuratova, Matematicheskoe modelirovanie vliyaniya transformatsii ekosistemy Yuzhnogo Priaral’ya na pochvenno–klimaticheskie usloviya. Diss. … d–ra fiz.–mat. nauk. Tashkent. 209 (2018). [Google Scholar]
  • O.I. Subbotina, S.G. Chanysheva, Klimat Priaral’ya. Tashkent. 172 (2006). [Google Scholar]
  • B.G. Vager, Z.M. Utina, Modelirovanie vliyaniya Aral’skogo morya na protsessy vlagoperenosa v pogranichnom sloe atmosfery. Tr.GGO. 468, 56-65 (1982). [Google Scholar]
  • Zh.Zh. Kublanov, Kolichestvennaya otsenka solevogo parametra dinamiki osushennogo dna Aral’skogo morya: Diss..dok.fil. (PhD). biol. nauk. Nukus. 109 (2023). [Google Scholar]
  • A.Kh. Khrgian, Fizika atmosfery. Izd. MGU. 328 (1986). [Google Scholar]
  • L.T. Matveev, Teoriya obshchei tsirkulyatsii atmosfery i klimata Zemli. Gidrometeoizdat. 296 (1991). [Google Scholar]
  • S.M. Semenov, V.V. Yasyukevich, E.S. Gel’ver, Vyyavlenie klimatogennykh izmenenii. Meteor. i gidrol. 324 (2006). [Google Scholar]
  • G.A. Tolkacheva i dr., Otsenka migratsii solei v basseine Aral’skogo moray. Prob. osv. pust. 3, 55-59 (1998). [Google Scholar]
  • O.E. Semenov, Radiatsionno-balansovaya model’ ploskostnykh istochnikov pyleniya poverkhnostei i otsenka fonovykh sukhikh vypadenii. Gidromet. i ekol. 2, 38-44 (1996). [Google Scholar]
  • B. S. Tleumuratova, B. Zh. Narymbetov, Konvektivnyi vynos aerozolya v pustynnykh zonakh kak faktor povysheniya temperatury vozdukha. Arid. ekos. 1(90), 11-19 (2022). [Google Scholar]
  • R. Avissar , R. A. Pielke, A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon.Weather Rev. 117(10), 2113-2136 (1989). [CrossRef] [Google Scholar]
  • R. Arimoto, Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition. Earth Sci.Rev. 54(1-3), 29-42 (2001). [CrossRef] [Google Scholar]
  • O. Boucher, U. Lohmann. The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models. Ocean. Liter. Rev. 2(43), 122 (1996). [Google Scholar]
  • J. D. Lindberg, J. B. Gillespie, Relationship between particle size and imaginary refractive index in atmospheric dust. Appl. Optics. 16(10), 2628-2630 (1977). [CrossRef] [Google Scholar]
  • G.I. Marchuk, Matematicheskoe modelirovanie v probleme okruzhayushchei sredy. Nauka. 320 (1982). [Google Scholar]
  • B.S. Tleumuratova, Matematicheskoe modelirovanie perenosa aerozolya v nizhnikh sloyakh atmosfery: Diss..kand. fiz.-mat. nauk. Tashkent. 138 (2004). [Google Scholar]
  • N. Fukuta, P.E. Wagner, Nucleation and Atmospheric Aerosols: Proceedings of the Thirteenth International Conference on Nucleation and Atmospheric Aerosols (A. Deepak Publishing, 1992). [Google Scholar]
  • K.S. Shifrin, A.M. Kokorin, K.S. Lamden i dr., Vliyanie aerozol’nogo sloya na summarnuyu radiatsiyu. Meteor. i gidrol. 4, 61-66 (1983). [Google Scholar]
  • J. Smagorinsky, S. Manabe, J. L. Holloway, Numerical results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev. 93(12), 727-768 (1965). [CrossRef] [Google Scholar]
  • R. Pincus, M. B. Baker, Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nat. 372(6503), 250-252 (1994). [CrossRef] [Google Scholar]
  • K.Ya. Kondrat’ev, Aerozol’ i klimat. Gidrometeoizdat. 541 (1991). [Google Scholar]
  • B.S. Tleumuratova, V.A. Statov, Model’ vodno-solevogo rezhima Aral’skogo morya i pribrezhnoi zony. Vest. KKO AN RUz. 5-6, 5-6 (2005). [Google Scholar]
  • B.S. Tleumuratova, Vliyanie solepyleperenosa na osadkoobrazovanie v Priaral’e. Arid. ekos. 3(39), 28-35 (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.