Open Access
Issue |
BIO Web Conf.
Volume 136, 2024
The 13th International and National Seminar of Fisheries and Marine Science (ISFM XIII 2024)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 12 | |
Section | Fisheries Product Technology | |
DOI | https://doi.org/10.1051/bioconf/202413602003 | |
Published online | 11 November 2024 |
- M. McCarty, Evaluation and management of refractory acne vulgaris in adolescent and adult men Dermatol. Clin. 3, 203 (2016). https://doi.org/10.1016/j.det.2015.11.007 [Google Scholar]
- S.O.N Fissy, R. Sari, L. Pratiwi, Effectivebess of Anti Acne Gel Containing Ginger Ethanol Extract (Zingiber officinale Rosc.Var. Rubrum) against Propionibacterium acnes dan Staphylococcus epidermidis J. Ilmu Kefarmasian Indones. 12, 193–201 (2014). http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/148 [Google Scholar]
- S.W. Huang, Y.J. Chen, S.T. Wang, L.W. Ho, J.K. Kao, M. Narita, M. Takahashi, C.Y. Wu, H.Y. Chengand, J.J. Shieh, Azithromycin impairs TLR7 signaling in dendritic cells and improves the severity of imiquimod-induced psoriasis-like skin inflammation in mice. J. Dermatol. Sci. 8, 59–70 (2016). https://doi.org/10.1016/j.jdermsci.2016.07.007 [CrossRef] [Google Scholar]
- S. Kardeh, N. Saki, F. Jowkar, B. Kardeh, S.A. Moein, M.H. Khorraminejad-Shirazi, Efficacy of Azithromycin in Treatment of Acne Vulgaris: A Mini Review World J. Plast. Surg. 8, 127–34. (2019). https://doi.org/10.29252/wjps.8.2.127 [Google Scholar]
- T.J. Foster, J.A. Geoghegan, V.K. Ganesh, M. Hook, Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus Nat. Rev. Microbiol. 1, 49–62 (2014). https://www.nature.com/articles/nrmicro3161 [CrossRef] [PubMed] [Google Scholar]
- K. Nakase, H. Nakaminami, Y. Takenaka, N. Hayashi, M. Kawashima, N. Noguchi., Relationship between the severity of acne vulgaris and antimicrobial resistance of bacteria isolated from acne lesions in a hospital in Japan J. Med. Microbiol. 6, 721–8 (2014). https://doi.org/10.1099/jmm.0.067611-0 [CrossRef] [PubMed] [Google Scholar]
- J. Hafsa, M.A. Smach, B. Charfeddine, K. Limem, H. Majdouband S. Rouatbi, Antioxidant and antimicrobial proprieties of chitin and chitosan extracted from Parapenaeus Longirostris shrimp shell waste. Ann. Pharm. Fr. 7. 27–33 (2016). https://doi.org/10.1016/j.pharma.2015.07.005 [CrossRef] [Google Scholar]
- M.Z. Elsabee, E.S Abdou, Chitosan based edible films and coatings: a review. Mater. Sci. Eng. C. Mater. Biol. Appl. 3, 1819–41 (2013). https://doi.org/10.1016/j.msec.2013.01.010 [CrossRef] [Google Scholar]
- A. Khan, K.D. Vu, B. Riedl, M. Lacroix, Optimization of the antimicrobial activity of nisin, Na-EDTA and pH against gram-negative and gram-positive bacteria LWT - Food Sci. Technol. 6, 124–9 (2015). https://doi.org/10.1016/j.lwt.2014.11.035 [Google Scholar]
- M.S. Sivakami, T. Gomathi, J. Venkatesan, H.S. Jeong, S.K. Kim, P.N. Sudha, Preparation and characterization of nano chitosan for treatment wastewaters Int. J. Biol. Macromol. 5, 204–12 (2013). https://doi.Org/10.1016/j.ijbiomac.2013.03.005 [CrossRef] [Google Scholar]
- K. Divya, S. Vijayan, T.K. George, M.S. Jisha, Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity Fibers Polym. 1, 221–30 (2017). https://link.springer.com/article/10.1007/s12221-017-6690-1 [CrossRef] [Google Scholar]
- I. Francolini, G. Donelli, C. Crisante, V. Taresco and A. Piozzi, Antimicrobial polymers for anti-biofilm medical devices: state-of-art and perspectives BT - biofilm-based healthcare-associated infections: volume II Biofilm-based Healthcare-associated Infections ed G Donelli (Cham: Springer International Publishing) pp 93–117 (2015). https://doi.org/10.1007/978-3-319-09782-4_7 [Google Scholar]
- R. Ikono A. Vibriani, I. Wibowo, K.E. Saputro W. Muliawan, B.M. Bachtiar, E. Mardliyati, E.W. Bachtiar, N.T. Rochman, H. Kagami, L Xianqi, T. Nagamura-Inoue, A. Tojo, Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms. BMC Res. Notes. 1, 383 (2010). https://doi.org/10.1186/s13104-019-4422-x [Google Scholar]
- A.K Magani, T.E. Tallei, B.J. Kolondam, Uji Antibakteri Nanopartikel Kitosan terhadap Pertumbuhan Bakteri Staphylococcus aureus dan Escherichia coli. J. Bios Logos. 1, 7 (2020). https://ejournal.unsrat.ac.id/v3/index.php/bioslogos/article/view/27978 [Google Scholar]
- N. Luthfiyana, S. Bija, C.D. Nugraeni, M.S. Lembang, E. Anwar, D.R. Laksmitawati, Nusaibah, P.W. Ratrinia, Mukmainna, Characteristics and antibacterial activity of chitosan nanoparticles from mangrove crab shell (Scylla sp.) in Tarakan Waters, North Kalimantan, Indonesia Biodiversitas. 2, 4018–25 (2022). https://doi.org/10.13057/biodiv/d230820 [Google Scholar]
- M.S. Benhabiles, R. Salah, H. Lounici, N. Drouiche, M.F.A. Goosen, N. Mameri,. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste Food Hydrocoll. 2, 48–56 (2012). https://doi.org/10.1016/j.foodhyd.2012.02.013 [CrossRef] [Google Scholar]
- R.M. Abdel-Rahman, R. Hrdina, A.M. Abdel-Mohsen, M.M.G. Fouda, A.Y. Soliman, F.K. Mohamed, K. Mohsin, T.D. Pinto, Chitin and chitosan from Brazilian Atlantic Coast: Isolation, characterization and antibacterial activity Int. J. Biol. Macromol. 8, 107–20 (2015). https://doi.org/10.1016/j.ijbiomac.2015.06.027 [CrossRef] [Google Scholar]
- N. Patibha, D. Sushmaand G. Rajinder, Screening for antioxidant and antibacterial potential of common medicinal plants in the treatment of acne. Int. J. Drug Dev. Res. 4, 65–71 (2012). http://www.ijddr.in [Google Scholar]
- H. El Knidri, R. Belaabed, A. Addaou, A. Laajeb, A. Lahsini, Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 12, 1181–9 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.139 [CrossRef] [Google Scholar]
- T.K. Sau, A. Pal, N.R. Jana, Z.L. Wang, T. Pal, Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanoparticle Res. 3, 257–61 (2001). https://link.springer.com/article/10.1023/A:1017567225071 [CrossRef] [Google Scholar]
- G.J.M. Christensen, C.F.P. Scholz, J. Enghild, H. Rohde, M. Kilian, A. Thurmer. E. Bruskiewicz. H.B. Lomholt, H. Bruggemann H, Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics. 1, 152 (2016). https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-2489-5 [CrossRef] [Google Scholar]
- N.M. Ahyat, F. Mohamad, A. Ahmad, A.A. Azmi, Chitin and chitosan extraction from Portunus pelagicus Malaysian. J. Anal. Sci. 2, 770–7 (2017). https://doi.org/10.17576/mjas-2017-2104-02 [Google Scholar]
- M. Mathaba, M.O. Daramola, Effect of chitosan’s degree of deacetylation on the performance of PES membrane infused with chitosan during AMD treatment Membranes (Basel). 1, (2020). https://doi.org/10.3390/membranes10030052 [Google Scholar]
- J.G. Domszy, G.A.F. Roberts, Evaluation of infrared spectroscopic techniques for analysing chitosan Die Makromol. Chemie. 18, 1671–7 (1985). https://doi.org/10.1002/macp.1985.021860815 [Google Scholar]
- D. Wanule, D.J. Balkhande, P. Ratnakar, A. Kulkarni, C. Bhowate, Extraction and FTIR analysis of chitosan from american cockroach, Periplaneta americana. Int. J. Eng. Sci. Innov. Technol. 3, 299–304 (2014). https://doi.org/10.7324/JAPS.2022.120321 [Google Scholar]
- G. Hao, Y. Hu, L. Shi, J. Chen, A. Cui, W. Weng, K. Osako, Physicochemical characteristics of chitosan from swimming crab (Portunus trituberculatus) shells prepared by subcritical water pretreatment. Sci. Rep. 1, 1646 (2021). https://www.nature.com/articles/s41598-021-81318-0 [CrossRef] [Google Scholar]
- N.A. Musmade, L. Mahatma, Extraction and characterization of chitosan by simple technique from mud crabs. Int. J. Curr. Microbiol. Appl. Sci. 1, 513–8 (2021). https://doi.org/10.20546/ijcmas.2021.1006.055 [Google Scholar]
- J. Cheng, H. Zhu, J. Huang, J. Zhao, B. Yan, S. Ma, H. Zhang, D. Fan, The physicochemical properties of chitosan prepared by microwave heating. Food Sci. Nutr. 8, 1987–94 (2020). https://doi.org/10.1002/fsn3.1486 [CrossRef] [Google Scholar]
- S. Sungkharak, N. Supasit, S. Choopan, Antibacterial activity against acne involved bacteria of chitosan in a soluble state and as nanoparticles. Chiang Mai J. Sci. 4, 1150–9 (2016). http://epg.science.cmu.ac.th/ejournal/ [Google Scholar]
- Y. Luo, T. Wang, P. Chen, J. Sun, Q. Wang, Encapsulation of indole-3-carbinol and 3, 3’-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability Food Chem. 13, 224–30 (2013). https://doi.org/10.1016/j.foodchem.2013.01.113 [CrossRef] [Google Scholar]
- J. Li, S. Zhuang, Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur. Polym. J. 13, 109984 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109984 [CrossRef] [Google Scholar]
- I.J. Winayu, N. Ekantari, I. Puspita, Ustadi, W. Budhijanto, P. Nugraheni, The effect of reduced acetic acid concentration on nano-chitosan formulation as fish preservative. International Conference on Food Science and Engineering (IOP Publishing) pp 0–6 (2019). https://doi.org/10.1088/1757-899X/633/1/012040 [Google Scholar]
- C.R. Alfath, V. Yulina, Sunnati, Antibacterial effect of Granati fructus cortex extract on Streptococcus mutans In Vitro. J. Dent. Indones. 2, 5–8 (2013). https://doi.org/10.14693/jdi.v20i1.126 [Google Scholar]
- M.K. Rasweefali, S. Sabu, K.V. Sunooj, A. Sasidharan, K.A.M. Xavier, Consequences of chemical deacetylation on physicochemical, structural and functional characteristics of chitosan extracted from deep-sea mud shrimp Carbohydr. Polym. Technol. Appl. 2, 100032 (2021). https://doi.org/10.1016/j.carpta.2020.100032 [Google Scholar]
- C. Duan, X. Meng, J. Meng, M.I.H. Khan, L. Dai, A. Khan, X. An, J. Zhang, T. Huq, Y. Ni, Chitosan as A preservative for fruits and vegetables: A review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 4, 11–21 (2019). https://doi.org/10.21967/jbb.v4i1.189 [CrossRef] [Google Scholar]
- M. Zahid, M. Ashraf, M. Arshad, G. Muhammad, A. Yasmin, H.M.A. Hameed, Antimicrobial activity of bacteriocins isolated from lactic acid bacteria against resistant pathogenic strains. Int. J. Nutr. Food Sci. 4, 326–31 (2015). https://doi.org/10.11648/j.ijnfs.20150403.20 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.