Open Access
Issue |
BIO Web Conf.
Volume 140, 2024
International Scientific and Practical Conference “Sustainable Development of the Environment and Agricultural Sector: Innovative and Ecological Technologies” (SDEA2024)
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 11 | |
Section | Digital and Engineering Technologies as a Factor in the Intensive Development of Agriculture | |
DOI | https://doi.org/10.1051/bioconf/202414003014 | |
Published online | 15 November 2024 |
- O. Pirogova, R. Nuzhdin, B. Pivovar, E3S Web of Conferences, 244, 10056 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- D. Rudoy et al., E3S Web of Conferences 381 01082 2023) [CrossRef] [EDP Sciences] [Google Scholar]
- Z. Jiao, A.J. Higgins, D.B. Prestwidge, Computers and Electronics in Agriculture, 48, 170-181 (2005) [CrossRef] [Google Scholar]
- R. Junqueira, R. Morabito, International Journal of Production Economics, 231(1), 150-160 (2019) [CrossRef] [Google Scholar]
- D.V. Balandin, O.A. Kuzenkov, V.K. Vildanov, Modern information technologies and IT-education, 17 2, 442-452 (2021) https://doi.org/10.25559/SITITO.17.202102 [in Russian] [Google Scholar]
- D.V. Balandin et al., Mathematical Modelling and Optimization of Scheduling for Processing Beet in Sugar Production In book Balandin D., Barkalov K., Meyerov I. (eds) Communications in Computer and Information Science 1750 227–238 (2022) https://doi.org/10.1007/978-3-031-24145-1_19 [CrossRef] [Google Scholar]
- D.V. Balandin, O.A. Kuzenkov, A.I. Egamov, IOP Conf. Ser.: Earth Environ. Sci., 1206, 012046 (2023) [CrossRef] [Google Scholar]
- D.V. Balandin et al., Bulletin of the Voronezh State University. Series: System Analysis and Information Technologies, 2, 62–76 (2023) [in Russian] [Google Scholar]
- D.V. Balandin, O.A. Kuzenkov, A.I. Egamov, Development of components for monitoring and control intelligent information system In book Voevodin V., Sobolev S., Yakobovsky M., Shagaliev R. (eds). Supercomputing. 9th Russian Supercomputing Days, RuSCDays. 2023. Moscow, Russia, September 25–26, 2023. Revised Selected Papers, Part II. Lecture Notes in Computer Science, book series, LNCS, 14389, 162–177 (2023). [Google Scholar]
- V.B. Popov, Chapter 7. Metaheuristic algorithms for problems of economic optimization and forecasting Information economics: development, management, models: A collective monograph. (Under the scientific editorship of N.V. Apatova. Simferopol, 2017) 401–416. [in Russian] [Google Scholar]
- T. Roughgarden, Algorithms Illuminated Part 3: Greedy Algorithms and Dynamic Programming Sound-likeyourself Publishing (LLC. New York, NY, 2019) 232. [Google Scholar]
- T.H. Cormen et al., Introduction to Algorithms. Third Edition (The MIT Press Cambridge, Massachusetts. London, England, 2009) 1313. [Google Scholar]
- A.A. Koroleva, Journal of the Belarusian State University. Economy, 1, 26–36 (2021) [in Russian] [Google Scholar]
- R.B. Harvey, Bulletin (University of Minnesota. Agricultural Experiment Station), 247, 36 (1928) [Google Scholar]
- V.N. Kukhar et al., Sugar, 1, 18-36 (2019) [in Russian] [Google Scholar]
- A.I. Egamov, E3S Web of Conferences, 395, 03007 (2023) https://doi.org/10.1051/e3sconf/202339503007 [CrossRef] [EDP Sciences] [Google Scholar]
- B. Bunday, Basic linear programming (London, 1984) 163. [Google Scholar]
- B Rainer, M Dell’Amico, S Martello, Assignment problems. Society for Industrial and Applied Mathematics (USA. Philadelphia, 2009) 382. [Google Scholar]
- N.A. Shchukina, Problems of Economics and management, 5(57), 169–174 (2016) [in Russian] [Google Scholar]
- V.P. Khranilov, P.N. Burago, A.I. Egamov, E3S Web of Conferences, 537, 09009 (2024) https://doi.org/10.1051/e3sconf/202453709009 [CrossRef] [EDP Sciences] [Google Scholar]
- D.V. Balandin, A.I. Egamov, O.A. Kuzenkov, Comparison of Heuristic Strategies for Sugar Beet Processing Schedules Applied Mathematics, Computational Science and Mechanics: Current Problems (Voronezh, Russian Federation, AMCSM, 2023) 1–6. https://doi.org/10.1109/AMCSM59829.2023.10525768 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.