Open Access
Issue
BIO Web Conf.
Volume 142, 2024
2024 International Symposium on Agricultural Engineering and Biology (ISAEB 2024)
Article Number 03002
Number of page(s) 5
Section Microbial Engineering and Biomedical Exploration
DOI https://doi.org/10.1051/bioconf/202414203002
Published online 21 November 2024
  • Pagiatakis, C., Musolino, E., Gornati, R., Bernardini, G. and Papait, R. (2019). Epigenetics of aging and disease: a brief overview. Aging Clinical and Experimental Research, 33: 737-745 [Google Scholar]
  • Birch, J. and Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes & Development, 34:1565–1576. [CrossRef] [PubMed] [Google Scholar]
  • Yang, J.-H., Hayano, M., Griffin, P.T., Amorim, J.A., Bonkowski, M.S., Apostolides, J.K., Salfati, E.L., Blanchette, M., Munding, E.M., Bhakta, M., Chew, Y.C., Guo, W., Yang, X., Maybury-Lewis, S., Tian, X., Ross, J.M., Coppotelli, G., Meer, M.V., Rogers-Hammond, R. and Vera, D.L. (2023). Loss of epigenetic information as a cause of mammalian aging. Cell, 186: 305-326 [CrossRef] [PubMed] [Google Scholar]
  • Gilbert, S.F. (2019). Aging: The Biology of Senescence. https://www.ncbi.nlm.nih.gov/books/NBK10041/. [Google Scholar]
  • Medline Plus (2014). Aging changes in organs, tissues, and cells: MedlinePlus Medical Encyclopedia. https://medlineplus.gov/ency/article/004012.htm. [Google Scholar]
  • Khan, S.S., Singer, B.D. and Vaughan, D.E. (2017). Molecular and physiological manifestations and measurement of aging in humans. Aging Cell, 16: 624–633. [CrossRef] [PubMed] [Google Scholar]
  • Enge, M., Arda, H.E., Mignardi, M., Beausang, J., Bottino, R., Kim, S.K. and Quake, S.R. (2017). Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. Cell, 171:321-330. [CrossRef] [PubMed] [Google Scholar]
  • Rossi, D.J., Bryder, D., Seita, J., Nussenzweig, A., Hoeijmakers, J. and Weissman, I.L. (2007). Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature, 447: 725–729. [CrossRef] [PubMed] [Google Scholar]
  • Rodríguez-Outeiriño, L., Hernández-Torres, F., F. Ramírez-de Acuña, Matías-Valiente, L., Sánchez – Fernández, C., Franco, D. and Aránega, A. (2021). Muscle Satellite Cell Heterogeneity: Does Embryonic Origin Matter? Frontiers in Cell and Developmental Biology, 9 [Google Scholar]
  • Mannick, J.B. and Lamming, D.W. (2023). Targeting the biology of aging with mTOR inhibitors. Nature Aging, 3: 642–660. [CrossRef] [PubMed] [Google Scholar]
  • Khan, S.S., Singer, B.D. and Vaughan, D.E. (2017). Molecular and physiological manifestations and measurement of aging in humans. Aging Cell, 16: 624–633. [CrossRef] [PubMed] [Google Scholar]
  • Sen, P., Shah, P.P., Nativio, R. and Berger, S.L. (2016). Epigenetic Mechanisms of Longevity and Aging. Cell, 166: 822–839. [CrossRef] [PubMed] [Google Scholar]
  • Kallenbach, J., Golnaz Atri Roozbahani, Mehdi Heidari Horestani and Aria Baniahmad. (2022). Distinct mechanisms mediating therapy-induced cellular senescence in prostate cancer. Cell & Bioscience, 12: 200. [CrossRef] [PubMed] [Google Scholar]
  • López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. and Kroemer, G. (2013). The Hallmarks of Aging. Cell, 153: 1194–1217. [CrossRef] [PubMed] [Google Scholar]
  • Leidal, A.M., Levine, B. and Debnath, J. (2018). Autophagy and the cell biology of age-related disease. Nature Cell Biology, 20: 1338–1348. [CrossRef] [PubMed] [Google Scholar]
  • Chang, J. T., Kumsta, C., Hellman, A. B., Adams, L.M., & Hansen, M. (2017). Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. Elife, 6:e18459. [CrossRef] [PubMed] [Google Scholar]
  • Srinivas, N., Rachakonda, S. and Kumar, R. (2020). Telomeres and Telomere Length: A General Overview. Cancers, 12: 558. [CrossRef] [PubMed] [Google Scholar]
  • Demanelis, K., Jasmine, F., Chen, L.S., Chernoff, M., Tong, L., Delgado, D., Zhang, C., Shinkle, J., Sabarinathan, M., Lin, H., Ramirez, E., Oliva, M., Kim-Hellmuth, S., Stranger, B.E., Lai, T.-P., Aviv, A., Ardlie, K.G., Aguet, F., Ahsan, H. and Consortium, Gte. (2020). Determinants of telomere length across human tissues. Science, 369: eaaz6876 [CrossRef] [PubMed] [Google Scholar]
  • Zhu, Y., Liu, X., Ding, X., Wang, F. and Geng, X. (2019). Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology, 20: 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Carlund, O., Norberg, A., Osterman, P., Landfors, M., Degerman, S. and Hultdin, M. (2023). DNA methylation variations and epigenetic aging in telomere biology disorders. Scientific Reports, 13: 7955. [CrossRef] [PubMed] [Google Scholar]
  • Chinnery, P.F. (2015). Mitochondrial disease in adults: what’s old and what’s new? EMBO Molecular Medicine, 7:1503–1512. [CrossRef] [PubMed] [Google Scholar]
  • Amorim, J.A., Coppotelli, G., Rolo, A.P., Palmeira, C.M., Ross, J.M. and Sinclair, D.A. (2022). Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nature Reviews Endocrinology, 18: 243-258. [CrossRef] [PubMed] [Google Scholar]
  • Merkwirth, C., Jovaisaite, V., Durieux, J., Matilainen, O., Jordan, Sabine D., Quiros, Pedro M., Steffen, Kristan K., Williams, Evan G., Mouchiroud, L., Tronnes, Sarah U., Murillo, V., Wolff, Suzanne C., Shaw, Reuben J., Auwerx, J. and Dillin, A. (2016). Two Conserved Histone Demethylases Regulate Mitochondrial Stress-Induced Longevity. Cell, 165: 1209–1223. [CrossRef] [PubMed] [Google Scholar]
  • Wang, K., Liu, H., Hu, Q., Wang, L., Liu, J., Zheng, Z., Zhang, W., Ren, J., Zhu, F. and Liu, G.-H. (2022). Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduction and Targeted Therapy, 7: 1–22. [CrossRef] [PubMed] [Google Scholar]
  • Pal, S. and Tyler, J.K. (2016). Epigenetics and aging. Science Advances, 2: e1600584. [CrossRef] [PubMed] [Google Scholar]
  • Crouch, J., Shvedova, M., Thanapaul, R.J.R.S., Botchkarev, V. and Roh, D. (2022). Epigenetic Regulation of Cellular Senescence. Cells, 11:672. [CrossRef] [PubMed] [Google Scholar]
  • A. Ayer, C. W. Gourlay, and I. W. Dawes. (2014). Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae, FEMS Yeast Research, 14: 60–72. [CrossRef] [PubMed] [Google Scholar]
  • Steenstrup, T., Kark, J.D., Verhulst, S., Thinggaard, M., Hjelmborg, J.V.B., Dalgård, C., Kyvik, K.O., Christiansen, L., Mangino, M., Spector, T.D., Petersen, I., Kimura, M., Benetos, A., Labat, C., Sinnreich, R., Hwang, S.-J., Levy, D., Hunt, S.C., Fitzpatrick, A.L. and Chen, W. (2017). Telomeres and the natural lifespan limit in humans. Aging, 9: 1130–1142. [CrossRef] [PubMed] [Google Scholar]
  • Raffaele, M. and Vinciguerra, M. (2022). The costs and benefits of senotherapeutics for human health. The Lancet Healthy Longevity, 3:e67–e77. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.