Open Access
Issue |
BIO Web Conf.
Volume 142, 2024
2024 International Symposium on Agricultural Engineering and Biology (ISAEB 2024)
|
|
---|---|---|
Article Number | 03020 | |
Number of page(s) | 15 | |
Section | Microbial Engineering and Biomedical Exploration | |
DOI | https://doi.org/10.1051/bioconf/202414203020 | |
Published online | 21 November 2024 |
- Zadpoor, Amir A.. “Mechanical meta-materials”. MATERIALS HORIZONS, 3(5):371-381 [Google Scholar]
- WANG Yue, CUI Zijian, ZHANG Xiaoju, et al. Research progress of metamaterial-enabled advanced terahertz biochemical sensing detection technology[J]. Physics Letters,2021,70(24):301-320. DOI:10.7498/aps.70.20211752. [Google Scholar]
- Cong Mengyang, Shi Wenjie, Qiu Jianfeng. High sensitivity terahertz metamaterials for biological tissue slicing[J]. Journal of Terahertz Science and Electronic Information,2024,22(4):378-384. DOI:10.11805/TKYDA2023420. [Google Scholar]
- Zhang Xiao. Detection of trace biomolecules based on multi resonance peak terahertz metamaterial absorber [D]. Guilin University of Electronic Science and Technology, 2022. [Google Scholar]
- Bowman T C, El-Shenawee M, Campbell L K. Terahertz imaging of excised breast tumor tissue on paraffin sections[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5):2088-2097. [CrossRef] [Google Scholar]
- Shi L, Shumyatsky P, Rodriguez-Contreras A, et al. Terahertz spectroscopy of brain tissue from a mouse model ofAlzheimer’s disease[J]. Journal of Biomedical Optics, 2016, 21(1):15014. [Google Scholar]
- Rong L, Latychevskaia T, Chen C, et al. Terahertz inline digital holography of human hepatocellular carcinoma tissue[J]. Scientific reports, 2015, 5(1):1-6. [12] Son J H, Oh S J, Cheon H. Potential clinical applications of terahertz radiation[J]. Journal of Applied Physics, 2019, 125(19):190901 [Google Scholar]
- Arbab M H, Winebrenner D P, Dickey T C, et al. Terahertz spectroscopy for the assessment of burn injuries in vivo terahertz spectroscopy for the assessment of burn injuries in vivo[J]. Journal of Biomedical Optics, 2017, 18(7):077004. [Google Scholar]
- Gavdush A A, Chernomyrdin N V, Malakhov K M, et al. Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis[J]. Journal of Biomedical Optics, 2019, 24(2):027001 [CrossRef] [PubMed] [Google Scholar]
- WANG Qingfang, WANG Zeyun, HAN Chao et al. Quantitative detection of biological mixtures based on terahertz metamaterial chip[J]. China Laser, 2021, 48, (23): 175-183.DOI:10.3788/CJL202148.2314001. [Google Scholar]
- Fan X D, White I M, Shopova S I, et al. Analytica Chimica Acta, 2008, 620 : 8. [CrossRef] [PubMed] [Google Scholar]
- HUANG Cai-xia, GAO Guoqiang. Chinese Journal of Analytical Chemistry, 2013, 3: 454. [Google Scholar]
- XIAN Xing-yu, WANG Tao, LIN Lin, et al. Instrument Technique and Sensor, 2012, 3 : 6. [Google Scholar]
- QIU Geng, LI Xin, RONG Meng-tian, et al . Journal of Shang hai Jiao tong University, 2013, 47(4): 626. [Google Scholar]
- Yan Xin, Zhang Xingfang, Liang Lanju, et al. Research progress of terahertz band metamaterials for biosensor applications[J]. Spectroscopy and Spectral Analysis,2014(9):2365-2371. DOI:10.3964/j.issn.1000-0593(2014)09-2365-07. [Google Scholar]
- Wang Yao. Research on the application of terahertz metamaterial biosensor in colorectal cancer labeling detection [D]. Guilin University of Electronic Science and Technology,2022. [Google Scholar]
- Yu Wenjing. Research on the detection of common pathogenic bacteria based on THz-ATR spectroscopy and THz metamaterial biosensor [D]. People’s Liberation Army Army Medical University, 2023.10.27001/d.cnki.gtjyu.2023.000018. [Google Scholar]
- Chuang, J. C.. Research on flexible intelligent mechanical metamaterials that can realize logic operations [D]. Shantou University,2023. [Google Scholar]
- Shen Jingcheng. Research on high sensitivity flexible strain sensors based on mechanical metamaterials[D]. Jiangsu:Southeast University,2021. [Google Scholar]
- Zhao, Haitao,Pan, Sijun,Natalia, Auginia et al. A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples[J].NATURE BIOMEDICAL ENGINEERING,2023,7, (2):135-135. DOI:10.1038/s41551-022-00954-7. [Google Scholar]
- Veerabagu, Udayakumar,Palza, Humberto,Quero, Franck.Review: Auxetic Polymer-Based Mechanical Metamaterials for Biomedical Applications[J ].ACS BIOMATERIALS SCIENCE & ENGINEERING, 2022,8, (7):2798 -2824.DOI:10.1021/acsbiomaterials.2c00109. [CrossRef] [PubMed] [Google Scholar]
- Kai Melde, Athanasios G. Athanassiadis,Dimitris Missirlis et al.Ultrasound-assisted tissue engineering[J].Nature Reviews Bioengineering, 2024, ():1-15.DOI:10.1038/s44222-024-00166-5. [Google Scholar]
- Gaharwar, Akhilesh K. Singh, Irtisha, Khademhosseini, Ali. Engineered biomaterials for in situ tissue regeneration[J].NATURE REVIEWS MATERIALS,2020,5, (9):686-705.DOI:10.1038/s41578-020-0209-x. [CrossRef] [Google Scholar]
- Dong, Zhicheng, Ren, Xiaoyang, Jia, Ben et al. Composite patch with negative Poisson’s ratio mimicking cardiac mechanical properties: design, experiment and simulation[J].MATERIALS TODAY BIO,2024,26:101098.DOI:10.1016/j.mtbio.2024.101098. [CrossRef] [PubMed] [Google Scholar]
- Qian, Zhen, Wang, Kan, Liu, Shizhen et al. Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing[J].JACCCARDIOVASCULAR IMAGING,2017,10, (7):719-731.DOI:10.1016/j.jcmg.2017.04.005. [Google Scholar]
- Wu, Can,Zhang, Yuxin,Xu, Yuanyuan et al. Injectable polyaniline nanorods/alginate hydrogel with AAV9-mediated VEGF overexpression for myocardial infarction treatment[J].BIOMATERIALS,2023,296,():122088-122088.DOI:10.1016/j.biomaterials.2023.122088. [CrossRef] [PubMed] [Google Scholar]
- Y. Liang. Structural design and performance study of graphene-based multifunctional metamaterials in the infrared band [D]. Harbin Institute of Technology, 2022 DOI:10.27061/d.cnki.ghgdu.2022.000211. [Google Scholar]
- B.Y. Chen. Study on the polarization and amplitude modulation mechanism and characteristics of optical field based on metamaterials [D]. Qingdao University, 2022 DOI:10.27262/d.cnki.gqdau.2022.001865. [Google Scholar]
- Liang Di-Han. Terahertz metamaterial sensing and modulation characterization based on graphene plasma-induced transparency [D]. Guilin University of Electronic Science and Technology, 2023 DOI:10.27049/d.cnki.ggldc.2023.000100. [Google Scholar]
- Feng H. Research and application of metamaterials in optical field amplitude modulation [D]. Qingdao University, 2021. DOI:10.27262/d.cnki.gqdau.2021.001001. [Google Scholar]
- Shanghai Jiao Tong University. Thermally driven dual-band continuously tunable terahertz wave metamaterial based on thermal drive: CN201510288031.6[P].2015-09-16. [Google Scholar]
- Xiao Xiao Yujie. Thermal expansion-regulated metamaterial additive manufacturing process and experimental characterization [D]. Hunan University, 2022.10.27135/d.cnki.ghudu.2022.002762. [Google Scholar]
- J.R. Wang. Design of metamaterial wave absorber and its 3D printing preparation process [D]. Xi’an University of Technology, 2023. 10.27398/d.cnki.gxalu.2023.000285. [Google Scholar]
- Y. C. Yang, L. F. Wang, X. Yu, et al. Characterization of bandgap coupling in tunable metamaterials with dual magnetic resonators[J]. Journal of Solid Mechanics,2024,45, (3):313-325. DOI:10.19636/j.cnki.cjsm42-1250/o3.2023.060. [Google Scholar]
- HASSAN ALi. Magnetic metamaterials for MRI applications [D]. Zhejiang University,2017. [Google Scholar]
- Juming Zhang. Research on the absorption mechanism and design scheme of broadband metamaterial wave absorber based on magnetic substrate [D]. Lanzhou University, 2022. 10.27204/d.cnki.glzhu.2022.000063. [Google Scholar]
- Zhou W. Design of wave-absorbing metamaterials based on magnetic materials and their properties [D]. Nanchang University, 2022.10.27232/d.cnki.gnchu.2022.001231. [Google Scholar]
- Li P. Terahertz tunable filter based on electrostatic-driven reconfigurable metamaterials [D]. Guilin University of Electronic Science and Technology, 2017. [Google Scholar]
- China University of Metrology. An electrostatically driven terahertz metamaterial modulator: CN201810407548.6[P].2018-10-09. [Google Scholar]
- Chen Guobin. Research on terahertz wave modulation method based on electromagnetic metamaterials [D]. Beijing Jiaotong University, 2022 DOI: 10.26944/d.cnki.gbfju.2022.002622. [Google Scholar]
- Ma Xinying. Research on the design method of metamaterial structure with adaptive function [D]. Dalian Maritime University, 2023.10.26989/d.cnki.gdlhu.2023.000942. [Google Scholar]
- Wang Chengyu, Wang Zhigang, Wang Huitian et al. Research progress on adaptive variant structure technology based on metamaterials[J]. Aviation Science and Technology, 2024,35, (5):45-59. DOI:10.19452/j.issn1007-5453.2024.05.004. [Google Scholar]
- Yan, Zhiyao,Zhu, Li-Guo,Meng, Kun et al. THz medical imaging: from in vitro to in vivo[J]. TRENDS IN BIOTECHNOLOGY, 2022, 40, (7): 816-830. DOI:10.1016/j.tibtech.2021.12.002. [CrossRef] [PubMed] [Google Scholar]
- Meiting Liu,Juntao Liu,Wei Liang et al. Recent advances and research progress on microsystems and bioeffects of terahertz neuromodulation[J]. Microsystems & Nanoengineering, 2023, 9, (6):25-41. DOI:10.1038/s41378-023-00612-1. [CrossRef] [PubMed] [Google Scholar]
- Gezimati, Mavis, Singh, Ghanshyam. Advances in terahertz technology for cancer detection applications[J]. OPTICAL AND QUANTUM ELECTRONICS. 2023, 55, (2):1-38. DOI:10.1007/s11082-022-04340-0. [CrossRef] [Google Scholar]
- Peng, Bo, Wei, Ye, Qin, Yu et al. Machine learning-enabled constrained multi-objective design of architected materials [J]. NATURE COMMUNICATIONS. 2023, 14, (1):1-12. DOI:10.1038/s41467-023-42415-y. [CrossRef] [Google Scholar]
- Y.L. Zhang, P. Li, L. Shi, eds. Metamaterials [M]. Chemical Industry Press,2019:229 pp. [Google Scholar]
- Xiong, Xiangyu, Huang, Xing, Liu, Yang et al. Azobenzene-bearing polymer engine powered organic nanomotors for light-driven cargo transportation[J]. CHEMICAL ENGINEERING JOURNAL, 2022, 445, (). DOI:10.1016/j.cej.2022.136576. [CrossRef] [Google Scholar]
- Wang, Jianhong,Wu, Hanglong,Zhu, Xiaowei et al. Ultrafast light-activated polymeric nanomotors[J]. NATURE COMMUNICATIONS,2024,15, (1):1-11. DOI:10.1038/s41467-024-49217-w. [CrossRef] [PubMed] [Google Scholar]
- Li, Haoze,Zhou, Sensen,Wu, Min et al. Light-Driven Self-Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Precise Tumor Vascular Disruption[J]. ADVANCED MATERIALS, 2023,35, (24): e2210920.DOI:10.1002/adma.202210920. [CrossRef] [PubMed] [Google Scholar]
- Hao Chen,Kaikai Wen, Yu Lu et al. White-light-driven fluorescence switch for super-resolution imaging guided photodynamic and photoacid therapy[J]. Science China Chemistry, 2022, 65, (12): 2528-2537. DOI:10.1007/s11426-022-1369-9. [CrossRef] [Google Scholar]
- Song, Xia, Zhang, Zhongxing, Zhu, Jingling et al. Thermoresponsive Hydrogel Induced by Dual Supramolecular Assemblies and Its Controlled Release Property for Enhanced Anticancer Drug Delivery[J]. BIOMACROMOLECULES, 2020,21, (4) :1516-1527.DOI:10.1021/acs.biomac.0c00077. [CrossRef] [PubMed] [Google Scholar]
- Pan, Fei,Amarjargal, Altangerel,Altenried, Stefanie et al. Bioresponsive Hybrid Nanofibers Enable Controlled Drug Delivery through Glass Transition Switching at Physiological Temperature[J]. ACS APPLIED BIO MATERIALS,2021,4, (5):4271-4279. DOI:10.1021/acsabm.1c00099. [CrossRef] [PubMed] [Google Scholar]
- Cressey, Paul,Amrahli, Maral,So, Po-Wah et al. Image-guided thermosensitive liposomes for focused ultrasound enhanced co-delivery of carboplatin and SN-38 against triple negative breast cancer in mice[J]. BIOMATERIALS, 2021, 271, (): 120758-120758.DOI:10.1016/j.biomaterials.2021.120758. [CrossRef] [PubMed] [Google Scholar]
- Ning Gu,Zuoheng Zhang, Yan Li. Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications[J]. 2022,15, (1):1-17. DOI:10.1007/s12274-021-3546-1. [Google Scholar]
- Gang Ren,Xia Zhou, Ruimin Long et al. Biomedical applications of magnetosomes: state of the art and perspectives[J]. Bioactive Materials, 2023, 28, (10): 27-49.DOI:10.1016/j.bioactmat.2023.04.025. [CrossRef] [PubMed] [Google Scholar]
- Department of Mechanics, School of Clinical Medicine. Team from Department of Mechanical Engineering, School of Clinical Medicine, and School of Materials achieves breakthrough in clinical magnetic resonance imaging of electromagnetic superstructured surfaces [N]. New Tsinghua, 2021, (003). [Google Scholar]
- Guangbo Xia,Beibei Song, Jian Fang. Electrical Stimulation Enabled via Electrospun Piezoelectric Polymeric Nanofibers for Tissue Regeneration [J]. Research,2022,2022,(4):757-779. DOI:10.34133/2022/9896274. [Google Scholar]
- Wang, Juan, Lin, Jiawei, Chen, Liang et al. Endogenous Electric-Field-Coupled Electrospun Short Fiber via Collecting Wound Exudation[J]. ADVANCED MATERIALS,2022,34, (9):e2108325-e2108325.DOI:10.1002/adma.202108325. [CrossRef] [PubMed] [Google Scholar]
- Xue, Haoyue, Jin, Jing, Tan, Zhi et al. Flexible, biodegradable ultrasonic wireless electrotherapy device based on highly self-aligned piezoelectric biofilms[J]. SCIENCE ADVANCES, 2024, 10, (22): adn0260.DOI:10.1126/sciadv.adn0260. [Google Scholar]
- Wang, Qian,Zhang, Yusheng,Xue, Haoyue et al. Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation[J]. NATURE COMMUNICATIONS, 2024, 15, (1):1-14. DOI:10.1038/s41467-024-48250-z. [CrossRef] [Google Scholar]
- Meng, Dan,Li, Chen,Hao, Changlong et al. Interfacial Self-assembly of Chiral Selenide Nanomembrane for Enantiospecific Recognition[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62, (43): e202311416. DOI:10.1002/anie.202311416. [CrossRef] [PubMed] [Google Scholar]
- Li, Chen,Zhao, Jing,Gao, Xiaoqing et al. Chiral Iron Oxide Supraparticles Enable Enantiomer-Dependent Tumor-Targeted Magnetic Resonance Imaging [J]. ADVANCED MATERIALS, 2023, 35, (49): e2308198. DOI:10.1002/adma.202308198. [Google Scholar]
- Ma, Baojin, Bianco, Alberto. Regulation of biological processes by intrinsically chiral engineered materials[J]. NATURE REVIEWS MATERIALS. 2023,8, (6):403-413.DOI:10.1038/s41578-023-00561-1. [CrossRef] [Google Scholar]
- Yeom, Jihyeon, Guimaraes, Pedro P. G. Ahn, Hyo Min et al. Chiral Supraparticles for Controllable Nanomedicine[J]. ADVANCED MATERIALS, 2020, 32, (1). e1903878.DOI:10.1002/adma.201903878. [CrossRef] [PubMed] [Google Scholar]
- YAN Nan, WU Xuanjing, WANG Ziqi et al. Synthesis of chiral mesoporous silica nanoparticles and their application in drug delivery[J]. Chinese Tissue Engineering Research,2023,27, (30):4890-4895.DOI:10.12307/2023.805. [Google Scholar]
- Zhu Pan-Yong. Construction of biotin-targeted functionalized supramolecular drug carriers and their properties [D]. Kunming University of Science and Technology, 2022.10.27200/d.cnki.gkmlu.2022.0011 74. [Google Scholar]
- Li, Zheng,Song, Nan, Yang, Ying-Wei. Stimuli-Responsive Drug-Delivery Systems Based on Supramolecular Nanovalves[J]. MATTER, 2019,1, (2):345 -368. doi:10.1016/j.matt.2019.05.019. [CrossRef] [Google Scholar]
- Kirill Koshelev, Pavel Tonkaev, Yuri Kivshar. Nonlinear chiral metaphotonics:a perspective[J]. Advanced Photonics, 2023, 5, (6): 17-28.DOI. 10.1117/1.ap.5.6.064001. [Google Scholar]
- Zhang, Jing Cheng, Chen, Mu Ku,Liang, Yao et al. Nanoimprint Meta-Device for Chiral Imaging[J]. ADVANCED FUNCTIONAL MATERIALS, 2023, 33, (49).DOI. 10.1002/adfm.202306422. [Google Scholar]
- Du, Peidong,Shen, Yanzhe,Zhang, Baoli et al. A H2O2-Supplied Supramolecular Material for Post-irradiated Infected Wound Treatment[J]. ADVANCED SCIENCE, 2023, 10, (9): e2206851-e2206851. DOI:10.1002/advs.202206851. [CrossRef] [Google Scholar]
- Lu Wang,Jingyi Ma, Tao Guo et al.Control of Surface Wrinkles on Shape Memory PLA/PPDO Micro nanofibers and Their Applications in Drug Release and Anti scarring[J].Advanced Fiber Materials,2023,5, (2):632-649.DOI:10.1007/s42765-022-00249-1. [CrossRef] [Google Scholar]
- Deng, Yongdie,Zhang, Fenghua,Jiang, Menglu et al.Programmable 4D Printing of Photoactive Shape Memory Composite Structures[J].ACS APPLIED MATERIALS & INTERFACES, 2022,14, (37): 42568-42577. DOI:10.1021/acsami.2c13982. [CrossRef] [PubMed] [Google Scholar]
- Deng, Yongdie,Yang, Binbin,Zhang, Fenghua et al. 4D printed orbital stent for the treatment of enophthalmic invagination [J]. BIOMATERIALS, 2022,. 291, ():121886-121886. DOI:10.1016/j.biomaterials.2022.121886. [CrossRef] [PubMed] [Google Scholar]
- Xu, Fan, Feringa, Ben L. Photoresponsive Supramolecular Polymers: from Light-Controlled Small Molecules to Smart Materials[J].ADVANCED MATERIALS,2023,35, (10):e2204413.DOI:10.1002/adma.202204413. [CrossRef] [PubMed] [Google Scholar]
- Zhang, Zeren, Xu, Liujun, Qu, Teng et al. Diffusion metamaterials[J]. NATURE REVIEWS PHYSICS, 2023,5, (4):218-235.DOI:10.1038/s42254-023-00565-4. [CrossRef] [Google Scholar]
- Xu, Hongtao, Huang, Gang, Cheng, Han et al. Thermoelectric-Feedback Nanocomposite Hydrogel for Temperature-Synchronized Monitoring and Regulation in Accurate Photothermal Therapy[J]. ADVANCED HEALTHCARE MATERIALS, 2024, (): e2401609.DOI:10.1002/adhm.202401609. [Google Scholar]
- ZHOU Ming-Xing, MAO Sui-Yu, HUANG Xian. Research progress on control of magnetic materials with biomedical applications[J]. Journal of Electronic Measurement and Instrumentation,2023,37(8):1-10. DOI:10.13382/j.jemi.B2306546. [Google Scholar]
- Chen, Ping,Xu, Chao,Wu, Ping et al.Wirelesslessly Powered Electrical-Stimulation Based on Biodegradable 3D Piezoelectric Scaffolds Promotes the Spinal Cord Injury[J].ACS NANO, 2022, 16, (10):16513-16528.DOI:10.1021/acsnano.2c05818. [CrossRef] [PubMed] [Google Scholar]
- Zhong, Songjing,Yao, Shuncheng,Zhao, Qinyu et al. Electricity-Assisted Cancer Therapy: from Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies[J].ADVANCED NANOBIOMED RESEARCH, 2023, 3, (3). DOI:10.1002/anbr.202200143. [CrossRef] [Google Scholar]
- Wang, Yuwen,Tay, Andy.Advances in Enantiomer-Dependent Nanotherapeutics[J].ACS NANO, 2023, 17, (11):9850-9869.DOI:10.1021/acsnano.3 c02798. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.