Open Access
Issue |
BIO Web Conf.
Volume 142, 2024
2024 International Symposium on Agricultural Engineering and Biology (ISAEB 2024)
|
|
---|---|---|
Article Number | 03022 | |
Number of page(s) | 5 | |
Section | Microbial Engineering and Biomedical Exploration | |
DOI | https://doi.org/10.1051/bioconf/202414203022 | |
Published online | 21 November 2024 |
- Isaacson, M.K. and H.L. Ploegh, Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe, 2009. 5(6): p. 559-70. [CrossRef] [PubMed] [Google Scholar]
- Suryadinata, R., et al., Mechanisms of generating polyubiquitin chains of different topology. Cells, 2014. 3(3): p. 674-89. [CrossRef] [Google Scholar]
- Gu, H. and B. Jan Fada, Specificity in Ubiquitination Triggered by Virus Infection. Int J Mol Sci, 2020. 21(11). [Google Scholar]
- Qin, L., H. Dai, and J. Wang, Key Considerations in Targeted Protein Degradation Drug Discovery and Development. Front Chem, 2022. 10: p. 934337. [CrossRef] [PubMed] [Google Scholar]
- Aguilar, R.C. and B. Wendland, Ubiquitin: not just for proteasomes anymore. Curr Opin Cell Biol, 2003. 15(2): p. 184-90. [CrossRef] [PubMed] [Google Scholar]
- Komander, D. and M. Rape, The ubiquitin code. Annu Rev Biochem, 2012. 81: p. 203-29. [CrossRef] [PubMed] [Google Scholar]
- Zheng, N. and N. Shabek, Ubiquitin Ligases: Structure, Function, and Regulation. Annu Rev Biochem, 2017. 86: p. 129-157. [CrossRef] [PubMed] [Google Scholar]
- Schulman, B.A. and J.W. Harper, Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol, 2009. 10(5): p. 319-31. [CrossRef] [PubMed] [Google Scholar]
- Jain, S.K., et al., Effect of elevated glucose concentrations on cellular lipid peroxidation and growth of cultured human kidney proximal tubule cells. Mol Cell Biochem, 1996. 162(1): p. 11-6. [CrossRef] [PubMed] [Google Scholar]
- Hershko, A., et al., Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem, 1983. 258(13): p. 8206-14. [Google Scholar]
- Birkou, M., et al., Impact of a Single Nucleotide Polymorphism on the 3D Protein Structure and Ubiquitination Activity of E3 Ubiquitin Ligase Arkadia. Front Mol Biosci, 2022. 9: p. 844129. [CrossRef] [Google Scholar]
- Pickart, C.M., Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001. 70: p. 503-33. [CrossRef] [PubMed] [Google Scholar]
- Mattioni, A., L. Castagnoli, and E. Santonico, RNF11 at the Crossroads of Protein Ubiquitination. Biomolecules, 2020. 10(11). [Google Scholar]
- Osley, M.A., A.B. Fleming, and C.F. Kao, Histone ubiquitylation and the regulation of transcription. Results Probl Cell Differ, 2006. 41: p. 47-75. [CrossRef] [PubMed] [Google Scholar]
- Deng, L., et al., The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther, 2020. 5(1): p. 11. [CrossRef] [Google Scholar]
- Jeusset, L.M. and K.J. McManus, Developing Targeted Therapies That Exploit Aberrant Histone Ubiquitination in Cancer. Cells, 2019. 8(2). [Google Scholar]
- Morrow, J.K., et al., Targeting ubiquitination for cancer therapies. Future Med Chem, 2015. 7(17): p. 2333-50. [CrossRef] [PubMed] [Google Scholar]
- Hoeller, D., C.M. Hecker, and I. Dikic, Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer, 2006. 6(10): p. 776-88. [CrossRef] [PubMed] [Google Scholar]
- Wei, D., et al., Deubiquitinase and Cell Cycle Regulation. Chinese Journal of Cell Biology, 2019. 41(6): p. 1135-43. [Google Scholar]
- Gross, S., et al., Targeting cancer with kinase inhibitors. J Clin Invest, 2015. 125(5): p. 1780-9. [CrossRef] [PubMed] [Google Scholar]
- Shen, J., et al., The E3 Ligase RING1 Targets p53 for Degradation and Promotes Cancer Cell Proliferation and Survival. Cancer Res, 2018. 78(2): p. 359-371. [CrossRef] [PubMed] [Google Scholar]
- Freedman, D.A., L. Wu, and A.J. Levine, Functions of the MDM2 oncoprotein. Cell Mol Life Sci, 1999. 55(1): p. 96-107. [CrossRef] [PubMed] [Google Scholar]
- Wang, P., et al., Beta-arrestin 2 functions as a G- protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem, 2003. 278(8): p. 6363-70. [CrossRef] [Google Scholar]
- Momand, J., et al., The MDM2 gene amplification database. Nucleic Acids Res, 1998. 26(15): p. 3453-9. [CrossRef] [Google Scholar]
- Fang, S., et al., Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem, 2000. 275(12): p. 8945-51. [CrossRef] [Google Scholar]
- Haupt, Y., et al., Mdm2 promotes the rapid degradation of p53. Nature, 1997. 387(6630): p. 296-9. [CrossRef] [PubMed] [Google Scholar]
- Kubbutat, M.H., S.N. Jones, and K.H. Vousden, Regulation of p53 stability by Mdm2. Nature, 1997. 387(6630): p. 299-303. [CrossRef] [PubMed] [Google Scholar]
- Yoon, S.Y., et al., Over-expression of human UREB1 in colorectal cancer: HECT domain of human UREB1 inhibits the activity of tumor suppressor p53 protein. Biochem Biophys Res Commun, 2005. 326(1): p. 7-17. [Google Scholar]
- Abdel-Fattah, G., et al., MDM2/p53 protein expression in the development of colorectal adenocarcinoma. J Gastrointest Surg, 2000. 4(1): p. 109-14. [CrossRef] [Google Scholar]
- Piao, M.Y., et al., Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development. Scand J Gastroenterol, 2016. 51(5): p. 572-82. [CrossRef] [PubMed] [Google Scholar]
- Inoue-Yamauchi, A., et al., Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy. Nat Commun, 2017. 8: p. 16078. [CrossRef] [Google Scholar]
- Opferman, J.T. and A. Kothari, Anti-apoptotic BCL-2 family members in development. Cell Death Differ, 2018. 25(1): p. 37-45. [CrossRef] [PubMed] [Google Scholar]
- Wu, X., Q. Luo, and Z. Liu, Ubiquitination and deubiquitination of MCL1 in cancer: deciphering chemoresistance mechanisms and providing potential therapeutic options. Cell Death Dis, 2020. 11(7): p. 556. [CrossRef] [PubMed] [Google Scholar]
- Zhang, T., H. Wang, and L. Han, Expression and Clinical Significance of Tumor Necrosis Factor Receptor-Associated Factor 6 in Patients With Colon Cancer. Iran Red Crescent Med J, 2016. 18(1): p. e23931. [Google Scholar]
- Liu, L., et al., Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene, 2018. 37(2): p. 148-159. [CrossRef] [PubMed] [Google Scholar]
- Sun, H., et al., TRAF6 upregulates expression of HIF-1alpha and promotes tumor angiogenesis. Cancer Res, 2013. 73(15): p. 4950-9. [CrossRef] [PubMed] [Google Scholar]
- Zou, T. and Z. Lin, The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci, 2021. 22(11). [Google Scholar]
- Koepp, D.M., et al., Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science, 2001. 294(5540): p. 173-7. [CrossRef] [PubMed] [Google Scholar]
- Liang, Q., et al., A selective USP1–UAF1 inhibitor links deubiquitination to DNA damage responses. Nature chemical biology, 2014. 10(4): 298-304. [CrossRef] [PubMed] [Google Scholar]
- Davis, M. I., et al., Small molecule inhibition of the ubiquitin-specific protease USP2 accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. Journal of Biological Chemistry, 2016. 291(47): 24628-24640. [CrossRef] [Google Scholar]
- Okada, K., et al., Vialinin A is a ubiquitin-specific peptidase inhibitor. Bioorg Med Chem Lett, 2013. 23(15): 4328-4331. [CrossRef] [Google Scholar]
- Colland, F., et al., Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol Cancer Ther, 2009. 8(8): 2286-2295. [CrossRef] [PubMed] [Google Scholar]
- Colombo, M., et al., Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3- dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes. Chemmedchem, 2010. 5(4): 552-558. [CrossRef] [PubMed] [Google Scholar]
- Berndtsson, M., et al., Induction of the lysosomal apoptosis pathway by inhibitors of the ubiquitin-proteasome system. Int J Cancer, 2009. 124(6): 1463-1469. [CrossRef] [PubMed] [Google Scholar]
- Fan, Z.L., The effect of USP1 on cell proliferation, autophagy and cisplatin sensitivity in pancreatic cancer. 2023. [Google Scholar]
- Kuang, Z.A., USP2 promotes tumor immune evasion via deubiquitination and stabilization of PD- L1 and the anti-tumor immunity role of Salvianolic acid B. 2023. A. Mecke, I. Lee, J.R. Baker jr., M.M. Banaszak Holl, B.G. Orr, Eur. Phys. J. E 14, 7 (2004). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.