Open Access
Issue |
BIO Web Conf.
Volume 143, 2024
The 5th International Conference on Bioenergy and Environmentally Sustainable Agriculture Technology (ICoN-BEAT 2024)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 9 | |
Section | Agriculture and Forestry | |
DOI | https://doi.org/10.1051/bioconf/202414301002 | |
Published online | 25 November 2024 |
- D. Tillman, K.G. Cassman, P.A. Matson, R. Naylor, S. Polasky, Agricultural sustainability and intensive production practices. Nature. 418, 671–677 (2002) [CrossRef] [PubMed] [Google Scholar]
- M, Rodell, I. Velicogna, JS. Famiglietti, Satellite-based estimates of groundwater depletion in India. Nature. 460, 999–1002 (2009) [CrossRef] [PubMed] [Google Scholar]
- N. Nurhidayati, A. Basit, Effect of residue management and N and S fertilisation on cane and sugar yield of plant and ratoon cane. Pertanika Journal of Tropical Agricultural Science. 41, 365–375 (2018). [Google Scholar]
- S.S. Mukhopadhyay, Nanotechnology in agriculture: prospects and constraints. Nanotechnology, science and applications. 7, 63–71 (2014) [CrossRef] [PubMed] [Google Scholar]
- N. Nurhidayati, A. Basit, S.I. Tito, M. Machfudz, and A.S Ansari, Responses of soil respiration and organic carbon to organic soil amendments in upland paddy. Soil Science Annual, 74, 1–8 (2023) [CrossRef] [Google Scholar]
- B.A.R.N. Srilatha, Nanotechnology in agriculture. J Nanomed Nanotechnol. 2(7), 1–5 (2011). doi:10.4172/2157-7439.1000123 [Google Scholar]
- H. Chhipa, P. Joshi, Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 1, Sustainable agriculture reviews, Springer. 20, 247–282. (2016). doi:10.1007/978-3-319-39303-2 [Google Scholar]
- M. Usman, M. Farooq, A. Wakeel, A. Nawaz, S.A. Cheema, H. Ur. Rehman, I. Ashraf, and M, Sanaullah, Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the total environment, 721, 137778. (2020). [CrossRef] [Google Scholar]
- H. Chen, R. Yada, Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22, 585–594 (2011) doi: 10.1016/j.tifs.2011.09.004 [CrossRef] [Google Scholar]
- Cakmak, Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil, 302, 1–17 (2008). [CrossRef] [Google Scholar]
- P.J. White, M.R. Broadly, Biofortification of crops with seven mineral elements often lacking in human diets: Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182, 49–84. (2009) [CrossRef] [PubMed] [Google Scholar]
- K.S., Subramanian, C. Bharathi, M. Gomathy, N. Balakrishnan. Role of arbuscular mycorrhizal (Glomus intraradices) fungus inoculation on Zn nutrition in grains of field grown maize. Australian Journal of Crop Science 8, 655–665 (2014). [Google Scholar]
- A. Suganya, A. Saravanan, Effect of Graded levels of Zn in combination with or without microbial inoculation on Zn transformation in soil, yield and nutrient uptake by maize for red soil. Green Farming 7, 938–941 (2016). [Google Scholar]
- B. Sadeghzadeh, A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13, 905–9027 (2013). [Google Scholar]
- A. Suganya, A. Saravanan, and N. Manivannan, Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Sci. Plant Anal, 51, 2001–202 (2020) [CrossRef] [Google Scholar]
- A. Suganya, A. Saravanan, DTPA – Zn in pH varied soils under simulated moisture conditions as influenced by graded levels of Zn in combination with zinc solubilizing bacteria. Trends in Bioscience, 8, 812–15. (2015) [Google Scholar]
- M.L Jackson, Soil chemical analysis: advanced course: a manual of methods useful for instruction and research in soil chemistry, physical chemistry of soils, soil fertility, and soil genesis. UW-Madison Libraries parallel press. (2005). [Google Scholar]
- S.A.M Ealia, M.P. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser.: Mater. Sci. Eng. 263, 032019. (2017). [CrossRef] [Google Scholar]
- Y. Kalra, Handbook of Reference Methods or Plant Analysis (1st ed). CRC Press, Taylor and Francis Group. (1997). [Google Scholar]
- E. Lombi, E. Donner, E. Tavakkoli, T. Turney, R. Naidu, B. W. Miller, K.G. Scheckel, Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and posttreatment processing of sewage sludge. Environ. Sci. Technol. 46, 9089–9096 (2012). [CrossRef] [PubMed] [Google Scholar]
- R.B. Reed, D.A. Ladner, C. P. Higgins, P. Westerhoff, J.F. Ranville, Solubility of nanozinc oxide in environmentally and biologically important matrices. Environ. Toxicol. Chem. 31, 93−99. (2012). [CrossRef] [PubMed] [Google Scholar]
- B. Hafeez, Y. M. Khanif, M. Saleem, Role of Zinc in Plant NutritionA Review American Journal of Experimental Agriculture. 3, 374–391, (2013) [CrossRef] [Google Scholar]
- K. Rudani, V. Patel, K. Prajapati The importance of zinc in plant growth – a review. International Research Journal of Natural and Applied Sciences, 5, 38–48. (2018). [Google Scholar]
- S. Nath, S. Dey, R. Kundu, S. Paul, Phosphate and zinc interaction in soil and plants: a reciprocal cross-talk. Plant Growth Regulation, 1–25. (2024). https://doi.org/10.1007/s10725-024-01201-6 [Google Scholar]
- T.T. Chanu, H. Upadhyaya, Zinc oxide nanoparticle-induced responses on plants: A physiological perspective. In Nanomaterials in Plants, Algae and Microorganisms; Elsevier: Amsterdam, The Netherlands. 43–64. (2019) [CrossRef] [Google Scholar]
- Y. Su, V. Ashworth, C. Kim, A.S. Adeleye, P. Rolshausen, C. Roper, J. White, D. Jassby, Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environ. Sci. Nano, 6, 2311–2331. (2019). [CrossRef] [Google Scholar]
- A. Babajani, A. Iranbakhsh, Z.O. Ardebili, B. Eslami, Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ. Sci. Pollut. Res. 26, 24430–24444. (2019). [CrossRef] [PubMed] [Google Scholar]
- M. Faizan, J.A. Bhat, C. Chen, M.N. Alyemeni, L. Wijaya, P. Ahmad, F. Yu, Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol. Biochem., 161, 122–130. (2021) [CrossRef] [Google Scholar]
- R. Bala, A. Kalia, S.S. Dhaliwal, Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice. J. Soil Sci. Plant Nutr. 19, 379–389. (2019) [CrossRef] [Google Scholar]
- Q. Wang, S. Xu, L. Zhong, X. Zhao, and L. Wang, Effects of zinc oxide nanoparticles on growth, development, and flavonoid synthesis in Ginkgo biloba. International Journal of Molecular Sciences, 24, 15775. (2023). [CrossRef] [PubMed] [Google Scholar]
- M.A. Nazir, M. Hasan, G. Mustafa, T. Tariq, M.M. Ahmed, R. Golzari Dehno, and M. Ghorbanpour, Zinc oxide nano-fertilizer differentially effect on morphological and physiological identity of redox-enzymes and biochemical attributes in wheat (Triticum aestivum L.). Scientific Reports, 14, 13091. (2024) [CrossRef] [PubMed] [Google Scholar]
- P.E.R. Prahardini, E. Fidiyawati, S.S. Antarlina, T. Sudaryono, Characteristic of grain and rice quality from five superior varieties support food sustainability. In IOP Conference Series: Earth and Environmental Science, 1253, 012016. IOP Publishing. (2023) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.