Open Access
Issue
BIO Web Conf.
Volume 143, 2024
The 5th International Conference on Bioenergy and Environmentally Sustainable Agriculture Technology (ICoN-BEAT 2024)
Article Number 01003
Number of page(s) 12
Section Agriculture and Forestry
DOI https://doi.org/10.1051/bioconf/202414301003
Published online 25 November 2024
  • N. Khoiriyah, R. Anindita, N. Hanani, and A. W. Muhaimin, Animal Food Demand in Indonesia: A Quadratic Almost Ideal Demand System Approach Agris -Line Pap. Econ. Inform. 2, 85–97 (2020). [Google Scholar]
  • N. Khoiriyah, R. Anindita, N. Hanani, and A. W. Muhaimin, Impacts of Rising Animal Food Prices on Demand and Poverty in Indonesia. Agric. Socio-Econ. J. 20, (2020). doi: http://orcid.org/0000-0001-6818-9485. [Google Scholar]
  • N. Khoiriyah, D. Forgenie, A. Iriany, and H. Apriliawan, Assessing the Welfare Effects of Rising Prices of Animal-Derived Sources of Food on Urban Households in Indonesia. Economic and Business Quarterly Reviews. 6, 1 (2023). doi: 10.31014/aior.1992.06.01.495. [Google Scholar]
  • K. W. Dammann and C. Smith, Factors affecting low-income women’s food choices and the perceived impact of dietary intake and socioeconomic status on their health and weight. J. Nutr. Educ. Behav. 41, 242–253 (2009). doi: 10.1016/j.jneb.2008.07.003. [CrossRef] [Google Scholar]
  • R. Anindita., A. A, Sadiyah., N. Khoiriyah., & D. R. Nendyssa, The demand for beef in Indonesian urban. In IOP Conference Series: Earth and Environmental Science. 411, 012057 (2020). doi: 10.1088/1755-1315/411/1/012057. [CrossRef] [Google Scholar]
  • G. Armagan and C. Akbay, An econometric analysis of urban households’ animal products consumption in Turkey. Appl. Econ. 40, 2029–2036 (2008). doi: 10.1080/00036840600949256. [CrossRef] [Google Scholar]
  • G. T. M. Hult, J. F. Hair Jr, D. Proksch, M. Sarstedt, A. Pinkwart, and C. M. Ringle, Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. J. Int. Mark. 26, 1–21 (2018). doi: https://doi.org/10.1509/jim.17.0151. [CrossRef] [Google Scholar]
  • T. Mahmudiono, A. A. Mamun, T. S. Nindya, D. R. Andrias, H. Megatsari, and R. R. Rosenkranz, The effectiveness of nutrition education for overweight/obese mother with stunted children (NEO-MOM) in reducing the double burden of malnutrition Nutrients. 10, 1910 (2018). doi: https://doi.org/10.3390/nu10121910. [CrossRef] [PubMed] [Google Scholar]
  • M. Angelucci and O. Attanasio, The demand for food of poor urban Mexican households: Understanding policy impacts using structural models Am. Econ. J. Econ. Policy. 20, 146–178 (2013). doi: 10.1257/pol.5.1.146. [CrossRef] [Google Scholar]
  • A. Agus and T. S. M. Widi, Current situation and future prospects for beef cattle production in Indonesia—A review. Asian-Australas. J. Anim. Sci. 31, 976–983 (2018). doi: 10.5713/ajas.18.0233. [CrossRef] [PubMed] [Google Scholar]
  • A. Deaton, Demand analysis Handb. Econom. 3, 1767–1839 (1986). [Google Scholar]
  • A. Deaton and J. Muellbauer An almost ideal demand system Am. Econ. Rev., 70, 312–326 (1980). [Google Scholar]
  • A. Iriany, J. Sui, R. Anindita, N. Khoiriyah, and A. Sa’diyah, Implementation of Demand System Restrictions and Accuracy of QUAIDS Model Estimator on Animal Food Demand in Indonesia East.-Eur. J. Enterp. Technol. 118, 27–37 (2022). doi: 10.15587/1729-4061.2022.263626. [Google Scholar]
  • N. Khoiriyah, D. Forgenie, A. Iriany, and H. Apriliawan, Assessing the welfare effects of rising prices of animal-derived sources of food on urban households in Indonesia. Econ. Bus. Q. Rev. 6, 1 (2023). doi: https://ssrn.com/abstract=4391562. [Google Scholar]
  • G.-H. Park, J.-H. Cho, D. Lee, and Y. Kim, Association between seafood intake and cardiovascular disease in South Korean adults: a community-based prospective cohort study. Nutrients. 14, 4864 (2022). doi: https://doi.org/10.3390/nu14224864. [CrossRef] [PubMed] [Google Scholar]
  • A. M. Salter and C. Lopez-Viso, Role of novel protein sources in sustainably meeting future global requirements. Proc. Nutr. Soc. 80, 186–194 (2021). doi: https://doi.org/10.1017/S0029665121000513. [CrossRef] [PubMed] [Google Scholar]
  • A. Durkin, T. Finnigan, R. Johnson, J. Kazer, J. Yu, D. Stuckey, and M. Guo. Can closed-loop microbial protein provide sustainable protein security against the hunger pandemic? Curr. Res. Biotechnol 4, 365–376 (2022). doi: https://doi.org/10.1016/j.crbiot.2022.09.001. [CrossRef] [Google Scholar]
  • F. Beyene, M. Senapathy, E. Bojago, and T. Tadiwos, Rural household resilience to food insecurity and its determinants: Damot Pulasa district, Southern Ethiopia J. Agric. Food Res. 11, 100500 (2023). doi: 10.1016/j.jafr.2023.100500. [Google Scholar]
  • J. D. Kolog, F. E. Asem, and A. Mensah-Bonsu. The state of food security and its determinants in Ghana: an ordered probit analysis of the household hunger scale and household food insecurity access scale. Sci. Afr. 19, 01579 (2023). doi: 10.1016/j.sciaf.2023.e01579. [Google Scholar]
  • F. Rusere, L. Hunter, M. Collinson, and W. Twine. Patterns and trends in household food security in rural Mpumalanga Province, South Africa. Dev. South. Afr. 78, 1–19 (2023). doi: 10.1080/0376835x.2023.2257737. [Google Scholar]
  • K.-H. Pho and B.-C. Truong. Pearson chi-squared and unweighted residual sum of square tests of fit for a probit model. Commun. Stat.-Simul. Comput., 35, 1–16 (2023). doi: https://doi.org/10.1080/03610918.2023.2202369. [Google Scholar]
  • Q. Yuan, X. Xu, Z. Yang, D. Shi, S. Qi, and Y. Zhang. Investigating crash-related injuries between animal-related and motor vehicle in Rural China: Bayesian random parameter probit model considering endogenous variable. Cogent Eng. 10, 2220506 (2023). doi: 10.1080/23311916.2023.2220506. [CrossRef] [Google Scholar]
  • P. Bazoche, N. Guinet, S. Poret, and S. Teyssier. Does the provision of information increase the substitution of animal proteins with plant-based proteins? An experimental investigation into consumer choices. Food Policy, 116, 102426 (2023). doi: 10.1016/j.foodpol.2023.102426. [CrossRef] [Google Scholar]
  • C. Floret, A.-F. Monnet, V. Micard, S. Walrand, and C. Michon, Replacement of animal proteins in food: How to take advantage of nutritional and gelling properties of alternative protein sources Crit. Rev. Food Sci. Nutr. 63, 920–946 (2023). doi: 10.1080/10408398.2021. [CrossRef] [PubMed] [Google Scholar]
  • M. Van Der Meer, A. R. Fischer, and M. C. Onwezen. Same strategies–Different categories: An explorative card-sort study of plant-based proteins comparing omnivores, flexitarians, vegetarians, and vegans. Appetite. 180, 106315 (2023). doi: 10.1016/j.appet.2022.106315. [CrossRef] [PubMed] [Google Scholar]
  • D. Chen, D. Abler, D. Zhou, X. Yu, and W. Thompson. A meta-analysis of food demand elasticities for China Appl. Econ. Perspect. Policy. 38, 50–72 (2015). doi: https://doi.org/10.1093/aepp/ppv006. [Google Scholar]
  • L. Chen, J. Sun, Z. Pan, Y. Lu, Z, Wang, L. Yang, and G, Sun. Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults. Molecules. 28, 579 (2023). doi: 10.3390/molecules28020579. [CrossRef] [PubMed] [Google Scholar]
  • X. Chen Quantitative Analysis of Regional Luxury Brand Marketing Using Logit Model J. Math., 202, 68–79 (2022). doi: 10.1155/2022/4870685. [Google Scholar]
  • S. A. A. Shah. Feasibility study of renewable energy sources for developing the hydrogen economy in Pakistan Int. J. Hydrog. Energy. 45, 15841–15854 (2020). doi: https://doi.org/10.1016/j.ijhydene.2019.09.153. [CrossRef] [Google Scholar]
  • İ. Y. Yarbaşı and A. K. Çelik. The determinants of household electricity demand in Turkey: An implementation of the Heckman Sample Selection model. Energy 283, 128431 (2023). doi: 10.1016/j.energy.2023.128431. [CrossRef] [Google Scholar]
  • L. Wang, X.-H. Zhang, and Y.-J. Zhang. Designing the pricing mechanism of residents’ self-selection sales electricity based on household size Int. Rev. Econ. Finance. 83, 860–878 (2023). doi: 10.1016/j.iref.2022.10.015. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.