Open Access
Issue
BIO Web Conf.
Volume 144, 2024
1st International Graduate Conference on Smart Agriculture and Green Renewable Energy (SAGE-Grace 2024)
Article Number 04008
Number of page(s) 9
Section Socioeconomic and Community Development
DOI https://doi.org/10.1051/bioconf/202414404008
Published online 25 November 2024
  • Akpan, A. I., & Zikos, D. (2023). Rural Agriculture and Poverty Trap: Can Climate- Smart Innovations Provide Breakeven Solutions to Smallholder Farmers? Environments, 10 (4), 57. https://doi.org/ 10.3390/environments10040057 [CrossRef] [Google Scholar]
  • Vu Tuan Anh. 1997. “Criteria for Rural Poverty Monitoring,” Vietnam’s Socio- Economic Development, Spring. [Google Scholar]
  • E. R. Alfiyyah, R. Andreswari, and E. Sutoyo, “ANALYSIS AND DETECTION OF FRAUD ON CALL DATA USING K NEAREST NEIGHBOR ALGORITHM (CASE STUDY: PT XYZ).” [Google Scholar]
  • J. Blumenstock, G. Cadamuro, and R. On, “Predicting poverty and wealth from mobile phone metadata.” [Online]. Available: www.sciencemag.org [Google Scholar]
  • B. Babenko, J. Hersh, D. Newhouse, A. Ramakrishnan, and T. Swartz, “Poverty Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution Satellite Images, With an Application in Mexico,” Nov. 2017, [Online]. Available: http://arxiv.org/abs/1711.06323 [Google Scholar]
  • A. Pangestu, R. Dedy, S. T. Wijaya, E. Hernawati, and M. Kom, “APLIKASI PENGOLAHAN DATA PREDIKSI KEMISKINAN BERBASIS E-COMMERCE MENGGUNAKAN DECISION TREE DAN WRAPPER FEATURE SELECTION APPLICATION BASED OF E-COMMERCE POVERTY PREDICTION DATA PROCESSING DECISION TREE AND WRAPPER FEATURE SELECTION.” [Google Scholar]
  • T. F. Aulia, D. R. Wijaya, E. Hernawati, and W. Hidayat, “Poverty Level Prediction Based on E-Commerce Data Using K-Nearest Neighbor and Information-Theoretical- Based Feature Selection,” in 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 28–33. doi: 10.1109/ICOIACT50329.2020.9332083. [Google Scholar]
  • D. R. Wijaya, N. L. P. S. P. Paramita, A. Uluwiyah, M. Rheza, A. Zahara, and D. R. Puspita, “Estimating city-level poverty rate based on e-commerce data with machine learning,” Electronic Commerce Research, vol. 22, no. 1, pp. 195–221, Mar. 2022, doi: 10.1007/s10660-020-09424-1. [CrossRef] [Google Scholar]
  • A. Pangestu, E. Hernawati, D. Rahman Wijaya, and W. Hidayat, “Wrapper Feature Selection for Poverty Level Prediction Based on E-Commerce Dataset,” 2020. [Google Scholar]
  • SKTime, “Auto ARIMA,” 2013. https://www.sktime.org/en/stable/api_reference/auto_generated/sktime.forecasting.ari ma.AutoARIMA.html [Google Scholar]
  • Zheng, B. 1993. “An axiomatic characterization of the Watts poverty index,” Economics Letters, 42 (1): 81-86. [CrossRef] [Google Scholar]
  • I. Fitria, M. Sayekti Kuncaraning Alam, P. Studi Matematika, and I. Teknologi Kalimantan, “Perbandingan Metode ARIMA dan Exponential Smoothing pada Peramalan Harga Saham LQ45 Tiga Perusahaan dengan Nilai Earning Per Share (EPS) Tertinggi.” [Google Scholar]
  • Liu H, Li C, Shao Y, Zhang X, Zhai Z et al. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011-2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. J Infect Public Health 2020; 13:287–294 [CrossRef] [PubMed] [Google Scholar]
  • S.M. Bartolomei et al. A note on a comparison of exponential smoothing methods for forecasting seasonal series. International Journal of Forecasting [Google Scholar]
  • BROWN, R. G., MEYER, R. F., The fundamental theory of exponential smoothing, Operations Research, 9, 1961, p. 673-685 [CrossRef] [Google Scholar]
  • MONTGOMERY, D. C., JOHNSON, L. A., GARDINER, J. S., Forecasting and Time Series Analysis, McGraw-Hill, Inc., 1990, ISBN 0-07-042858-1 [Google Scholar]
  • Christensen, S.L., Anglov, J.T.B., Christensen, J.M., Olsen, E. and Poulsen, O.M. 1993. Application of a new AMIQAS computer program for integrated quality control, method evaluation and proficiency testing. Fresenius J. Anal. Chem, 345 : 343 –350 [CrossRef] [Google Scholar]
  • J.D. Amato et al. The real time predictive content of money for output. Journal of Monetary Economics [Google Scholar]
  • Yang S, Chen HC, Chen WC, Yang CH. Student enrollment and teacher statistics forecasting based on time-series analysis. Comput Intell Neurosci 2020; 2020:1246920 [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.