Open Access
Issue
BIO Web Conf.
Volume 146, 2024
2nd Biology Trunojoyo Madura International Conference (BTMIC 2024)
Article Number 01080
Number of page(s) 6
Section Dense Matter
DOI https://doi.org/10.1051/bioconf/202414601080
Published online 27 November 2024
  • A. Faizin and I. Surjandari, Product recommender system using neural collaborative filtering for marketplace in indonesia, IOP Conf. Ser. Mater. Sci. Eng., 909, 1 (2020), DOI: 10.1088/1757-899X/909/1/012072 [CrossRef] [Google Scholar]
  • P. Yochum, L. Chang, T. Gu, and M. Zhu, Linked Open Data in Location-Based Recommendation System on Tourism Domain: a Survey, IEEE Access, 8, 16409–16439 (2020), DOI: 10.1109/aCCESS.2020.2967120 [CrossRef] [Google Scholar]
  • C.-S. Jeong, K.-H. Ryu, J.-Y. Lee, and K.-D. Jung, “Deep Learning-based Tourism Recommendation System using Social Network Analysis,” Int. J. Internet, Broadcast. Commun., 12, 2, 113–119 (2020), DOI: 10.7236/IJIBC.2020.12.2.113 [Google Scholar]
  • R. A. Hamid et al., “How smart is e-tourism? A systematic review of smart tourism recommendation system applying data management,” Computer Science Review, 39. Elsevier Ireland Ltd, Feb. 01, (2021). DOI: 10.1016/j.cosrev.2020.100337 [Google Scholar]
  • H. woo An and N. Moon, Design of recommendation system for tourist spot using sentiment analysis based on CNN-LSTM, J. Ambient Intell. Humaniz. Comput., 13, 3, 16531663 (2022), DOI: 10.1007/s12652-019-01521-w [Google Scholar]
  • W. Shafqat and Y. C. Byun, A context-aware location recommendation system for tourists using hierarchical LSTMmodel, Sustain., 12, 10 (2020), DOI: 10.3390/su12104107 [Google Scholar]
  • K. E. Permana, S. Herawati, and W. Setiawan, Tourism Destination Recommendation System Using Collaborative Filtering and Modified Neural Network, 60–70 (2023), DOI: 10.2991/978-94-6463-174-6_7 [Google Scholar]
  • A. A. Fakhri, Z. K. A. Baizal, and E. B. Setiawan, Restaurant Recommender System Using UserBased Collaborative Filtering Approach: A Case Study at Bandung Raya Region, in Journal of Physics: Conference Series, May 2019, 1192, 1 (2019) DOI: 10.1088/1742-6596/1192/1/012023 [Google Scholar]
  • M. D. Ekstrand, J. T. Riedl, and J. A. Konstan, Collaborative filtering recommender systems, Foundations and Trends in Human-Computer Interaction, 4, 2. 81–173 (2010), DOI: 10.1561/1100000009 [Google Scholar]
  • P. Do, T. H. V. Phan, and B. B. Gupta, Developing a Vietnamese Tourism Question Answering System Using Knowledge Graph and Deep Learning, ACM Trans. Asian Low-Resource Lang. Inf. Process., 20, 5, 1–18 (2021), DOI: 10.1145/3453651. [CrossRef] [Google Scholar]
  • D. Sukma Pradana and G. P. Hartawan, Perbandingan Algoritma Content-Based Filtering dan Collaborative Filtering dalam Rekomendasi Kegiatan Ekstrakurikuler Siswa [Google Scholar]
  • O. G. Yalçin, Applied Neural Networks with TensorFlow 2: API Oriented Deep Learning with Python. Springer, (2020). DOI: 10.1007/978-14842-6513-0 [Google Scholar]
  • R. E. Nakhli, H. Moradi, and M. A. Sadeghi, Movie Recommender System Based on Percentage of View, 2019 IEEE 5th Conf. Knowl. Based Eng. Innov. KBEI 2019, 656–660 (2019), DOI: 10.1109/KBEI.2019.8734976 [Google Scholar]
  • S. Anunaya, Data Preprocessing in Data Mining-A Hands On Guide, Retrieved Novemb., 2 (2022) [Google Scholar]
  • M. Ilhami and Suharjito, Film recommendation systems using matrix factorization and collaborative filtering, 2014 Int. Conf. Inf. Technol. Syst. Innov. ICITSI2014 - Proc., November, 1-6, (2014), DOI: 10.1109/ICITSI.2014.7048228 [Google Scholar]
  • Y. Liu, S. Wang, M. S. Khan, and J. He, A novel deep hybrid recommender system based on autoencoder with neural collaborative filtering, Big Data Min. Anal., 1, 3, 211–221, (2018), DOI: 10.26599/BDMA.2018.9020019 [CrossRef] [Google Scholar]
  • S. K. Kumar, On weight initialization in deep neural networks, 1–9 (2017), http://arxiv.org/abs/1704.08863 [Google Scholar]
  • K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proc. IEEE Int. Conf. Comput. Vis., 2015 International Conference on Computer Vision, ICCV 2015, 1026–1034, (2015), DOI: 10.1109/ICCV.2015.123 [Google Scholar]
  • S. Khaki, Z. Khalilzadeh, and L. Wang, Predicting yield performance of parents in plant breeding: A neural collaborative filtering approach, PLoS One, 15, 5, 1–13 (2020), DOI: 10.1371/journal.pone.0233382 [Google Scholar]
  • Amity University and Institute of Electrical and Electronics Engineers, Proceedings of the 9th International Conference On Cloud Computing, Data Science and Engineering: Confluence, 10-11 January 2019, Uttar Pradesh, India (2019) [Google Scholar]
  • R. M. Sallam, M. Hussein, and H. M. Mousa, An Enhanced Collaborative Filtering-based Approach for Recommender Systems (2020) [Google Scholar]
  • Sagedur Rahman, Extended Collaborative Filtering Recommendation System with Adaptive KNN and SVD, Int. J. Eng. Manag. Res., 13, 4, 105–112, (2023), DOI: 10.31033/ijemr.13.4.14 [Google Scholar]
  • M. I. T. C. Data, MIT Critical Data Secondary Analysis of Electronic Health Records. [Google Scholar]
  • A. Melese, Food and Restaurant Recommendation System Using Hybrid Filtering Mechanism, Mon. J. by TWASP, 4, 4, 268–281 (2021), https://doi.org/10.5281/zenodo.4712849 [Google Scholar]
  • F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, Recommendation systems: Principles, methods and evaluation, Egypt. Informatics J., 16, 3, 261–273 (2015), DOI: 10.1016/j.eij.2015.06.005 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.