Open Access
Issue
BIO Web Conf.
Volume 146, 2024
2nd Biology Trunojoyo Madura International Conference (BTMIC 2024)
Article Number 01081
Number of page(s) 8
Section Dense Matter
DOI https://doi.org/10.1051/bioconf/202414601081
Published online 27 November 2024
  • R. Kumar, P. Saha, S. Sahana, and A. Dubey, A Review On Diabetes Mellitus: Typel & Type2, World J Pharm Pharm Sci, 9, 10, (2020), DOI: 10.20959/wjpps202010-17336 [Google Scholar]
  • M. S. Fiqri and H. Dwi Bhakti, Klasifikasi Potensi Penyakit Diabetes Mellitus Tipe Ii Pada Pasien Menggunakan Algoritme Knn (K-Nearest Neighbo)r, (2024) [Google Scholar]
  • O. Kelly et al., The impact of diabetes mellitus on the development of psychiatric and neurological disorders, Elsevier B.V, (2024), DOI: 10.1016/j.dscb.2024.100135. [Google Scholar]
  • D. Samocha-Bonet, B. Wu, and D. K. Ryugo, Diabetes mellitus and hearing loss: A review, Elsevier Ireland Ltd., (2021), DOI: 10.1016/j.arr.2021.101423 [Google Scholar]
  • S. Gysling, C. A. Lewis-Lloyd, D. N. Lobo, C. J. Crooks, and D. J. Humes, The effect of diabetes mellitus on perioperative outcomes after colorectal resection: a national cohort study, Br J Anaesth, 133, 1, 67–76, (2024), DOI: 10.1016/j.bja.2024.04.010 [CrossRef] [PubMed] [Google Scholar]
  • P. Tao et al., Diabetes mellitus is a risk factor for incident chronic kidney disease: A nationwide cohort study, Heliyon, 10, 7, (2024), DOI: 10.1016/j.heliyon.2024.e28780 [Google Scholar]
  • S. Syarifuddin, W. Samosir, and U. Efarina, Characteristics Of Types Of Diabetes Mellitus Ii In Regional General Hospital Than Rondahaim, Simalungun District, Medical Research, Nursing, Health and Midwife Participation, (2019), Available: https://medalionjournal.com/ [Google Scholar]
  • D. Ratnasari, Comparison of Performance of Four Distance Metric Algorithms in K-Nearest Neighbor Method on Diabetes Patient Data, Indonesian Journal of Data and Science, 4, 2, 101–112, (2023), DOI: 10.56705/ijodas.v4i2.71 [CrossRef] [Google Scholar]
  • I. Iswanto, T. Tulus, and P. Sihombing, Comparison of Distance Models on K-Nearest Neighbor Algorithm in Stroke Disease Detection, Applied Technology and Computing Science Journal, 4, 1, 63–68, (2021), DOI: 10.33086/atcsj.v4i1.2097 [CrossRef] [Google Scholar]
  • J. B. Chandra and D. Nasien, Application Of Machine Learning K-Nearest Neighbour Algorithm To Predict Diabetes, International Journal of Electrical, Energy and Power System Engineering (IJEEPSE), 6, (2023), Available: http://www.ijeepse.ejournal.unri.ac.id [Google Scholar]
  • J. Mantik et al., Implementation of KNN algorithm in classifying diabetic ulcers in patients with diabetes mellitus, (2023) [Google Scholar]
  • T. A. Assegie, T. Suresh, R. Purushothaman, S. Ganesan, and N. K. Kumar, Early Prediction of Gestational Diabetes with Parameter-Tuned K- Nearest Neighbor Classifier, Journal of Robotics and Control (JRC), 4, 4, 452–457, (2023), DOI: 10.18196/jrc.v4i4.18412 [CrossRef] [Google Scholar]
  • F. Solihin, M. Syarief, E. M. S. Rochman, & A. Rachmad, Comparison of Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Stochastic Gradient Descent (SGD) for Classifying Corn Leaf Disease based on Histogram of Oriented Gradients (HOG) Feature Extraction, Elinvo (Electronics, Informatics, and Vocational Education), 8, 1, 121129, (2023), http://jurnal.mdp.ac.id [CrossRef] [Google Scholar]
  • H. A. Dwi Fasnuari, H. Yuana, and M. T. Chulkamdi, Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Penyakit Diabetes Melitus, Antivirus: Jurnal Ilmiah Teknik Informatika, 16, 2, 133–142, (2022), doi: 10.35457/antivirus.v16i2.2445 [CrossRef] [Google Scholar]
  • H. Susanto, D. Yanto, N. Rusdiana, and D. T. Rahayu, Prediksi Resiko Penyakit Jantung dan Pembuluh Darah Menggunakan Algoritma K- Nearest Neighbor (KNN), Joined Journal (Journal of Informatics Education), 3, 1, (2020) [Google Scholar]
  • H. Susanto, D. Yanto, N. Rusdiana, and D. T. Rahayu, Prediksi Resiko Penyakit Jantung dan Pembuluh Darah Menggunakan Algoritma K- Nearest Neighbor (KNN), Journal of Informatics Education, 3, 1, (2020) [Google Scholar]
  • S. O. Abdulsalam, A Diabetic Prediction Model using Firefly Algorithm with K-Nearest Neighbor Classifier, Int J Appl Inf Syst, 12, (2022), Available: https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes [Google Scholar]
  • M. E. Febrian, F. X. Ferdinan, G. P. Sendani, K. M. Suryanigrum, and R. Yunanda, Diabetes prediction using supervised machine learning, in Procedía Computer Science, Elsevier B.V, 21–30, 2022, DOI: 10.1016/j.procs.2022.12.107 [Google Scholar]
  • A. Sumathi and S. Meganathan, Ensemble classifier technique to predict gestational diabetes mellitus (GDM), Computer Systems Science and Engineering, 40, 1, 313–325, (2022), DOI: 10.32604/CSSE.2022.017484 [CrossRef] [Google Scholar]
  • E. M. S. Rochman, H. Suprajitno, I. Kamilah, A. Rachmad, & I. Santosa, Tuberculosis classification using random forest with K-prototype as a method to overcome missing value, Commun. Math. Biol. Neurosci., (2023) [Google Scholar]
  • A. Ali, M. Alrubei, L. F. M. Hassan, M. Al-Ja’afari, and S. Abdulwahed, Diabetes classification based on KNN, IIUM Engineering Journal, 21, 1, 175181, (2020), DOI: 10.31436/iiumej.v21i1.1206 [Google Scholar]
  • Rochman, E. M. S., Suprajitno, H., Rachmad, A., & Santosa, I., Utilizing LSTM and K-NN for Anatomical Localization of Tuberculosis: A Solution for Incomplete Data, Mathematical Modelling of Engineering Problems, 10, 4, (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.