Open Access
Issue |
BIO Web Conf.
Volume 147, 2024
11th International Symposium of East Asia Fisheries and Technologist Association (EAFTA 2024)
|
|
---|---|---|
Article Number | 01028 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/bioconf/202414701028 | |
Published online | 10 January 2025 |
- Brahma S., Nath B., Basumatary B., Das B., Saikia P., Patir K., Basumatary S. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances. 10: 100284 (2022). [Google Scholar]
- Dinanti P., Sundari S., Laksmono R., Ramadhan T.R., Sianipar L. Analisis biaya ekonomi serta dampak lingkungan penggunaan gasoline dan biofuel sebagai bahan bakar transportasi. El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam. 5(3): 1892–1905 (2024). [CrossRef] [Google Scholar]
- Erdiwansyah E., Gani A., Muhtadin M., Nizar M., Bahagia B., Faisal M., Ahmad S. Menuju masa depan hijau: sosialisasi pemanfaatan energi terbarukan di kabupaten Gayo Lues, Provinsi Aceh. BAKTIMAS: Jurnal Pengabdian pada Masyarakat. 6(1): 19–30 (2024). [Google Scholar]
- Alam F., Mobin S., Chowdhury H. Third generation biofuel from algae. Procedia Engineering. 105: 763–768 (2015). [CrossRef] [Google Scholar]
- Robak K., Balcerek M. Review of second generation bioethanol production from residual biomass. Food Technology and Biotechnology. 56(2): 174 (2018). [Google Scholar]
- Rinastiti A.C., Permata D.I., Palupi B., Mumtazah Z., Rizkiana M.F., Rahmawati A. Effect of Time, pH, and Yeast Concentration on Bioethanol Levels in the Ulva sp. Fermentation Process. Journal of Biobased Chemicals. 2(2): 61–77 (2022). [Google Scholar]
- Saini J.K., Saini R., Tewari L Lignocellulosic agricultural wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. J. Biotech. 5: 337–353 (2015). [Google Scholar]
- Ramachandra T.V., Hebbale D. Bioethanol from macroalgae: Prospects and challenges. Renewable and Sustainable Energy Reviews. 117: 109479 (2020). [Google Scholar]
- Offei F., Mensah M., Kemausuor F. Cellulase and acid-catalyzed hydrolysis of Ulva fasciata, Hydropuntia dentata and Sargassum vulgare for bioethanol production. SN Applied Sciences. 1: 1–13 (2019). [CrossRef] [Google Scholar]
- Gengiah K., Rajendran N., Al-Ghanim K.A., Govindarajan M., Gurunathan B. Process and techno economic analysis of bioethanol production from residual biomass of marine macroalgae Ulva lactuca. Science of The Total Environment. 161661 (2023). [Google Scholar]
- Sharmiladevi N., Swetha A., Gopinath K.P. Processing of Gracilaria edulis and Ulva lactuca for bioethanol and bio-oil production: an integrated approach via fermentation and hydrothermal liquefaction. Biomass Conversion and Biorefinery. 1–9 (2021). [Google Scholar]
- Shukla A., Kumar D., Girdhar M., Kumar A., Goyal A., Malik T., Mohan A. 2023. Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. Biotechnology for Biofuels and Bioproducts. 16(1): 44 (2023). [Google Scholar]
- Ferdouse F., Løvstad Holdt S., Smith R., Murúa P., Yang L. The global status of seaweed production, trade and utilization. Globefish Research Program 124 (2018). [Google Scholar]
- KKP [Ministry of Marine Affairs and Fisheries]. 2021. Laporan Kinerja Satu Tahun Kementerian Kelautan dan Perikanan. Jakarta. https://statistik.kkp.go.id/home.php?m=total&i=2#panel-footer. [Google Scholar]
- Gupta A., Prakash J. Sustainable bio-ethanol production from agro-residues: A review. Renew Sustain Energy Rev. 41: 550–567 (2015). [Google Scholar]
- Maharani D.M., Normalasari L., Kumalasari D., Prakoso C.A.H., Kusumaningtyas M., Ramadhan M.T. Pengaruh praperlakuan secara alkalisasi-resistive heating terhadap kandungan lignoselulosa jerami padi. Agritech. 37(2): 132–138 (2017). [Google Scholar]
- Yahmed B.N., Berrejeb N., Jmel M.A., Jazzar S., Marzouki M.N., Smaali I. Efficient biocatalytic conversion of stranded green macroalgal biomass using a specific cellulases-based cocktail. Waste and biomass valorization. 11: 211–222 (2020). [Google Scholar]
- Rana V., Eckard A.D., Ahring B.K. Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. Springerplus 3:516 (2014). [CrossRef] [Google Scholar]
- Jain A., Jain R., Jain S., Jain A., Jain R., Jain S. Quantitative analysis of reducing sugars by 3, 5-dinitrosalicylic acid (DNSA method). Basic Techniques in Biochemistry, Microbiology and Molecular Biology: Principles and Techniques. 181–183 (2020). [Google Scholar]
- Mohamed M.A., Jaafar J., Ismail A.F., Othman M.H.D., Rahman M.A. Fourier transform infrared (FTIR) spectroscopy. In Membrane characterization. 3–29 (2017). [CrossRef] [Google Scholar]
- Kazir M., Abuhassira Y., Robin A., Nahor O., Luo J., Israel A., … Livney Y.D. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids. 87: 194–203 (2019). [Google Scholar]
- Sa’diyah, A., Sp D.A. Potensi rumput laut gracilaria sp. sebagai alternatif biomassa studi kasus di kawasan tambak tanjungsari, Kecamatan Jabon, Sidoarjo. Prosiding SENIATI. 4(2): 279–284 (2018). [Google Scholar]
- Nunraska N., Rattanasansri S., Praiboon J., Chirapart A. Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds. Journal of Applied Phycology. 31: 683–690 (2019). [Google Scholar]
- Santika L.G., Ma’ruf W.F. 2014. Karakteristik agar rumput laut Gracilaria Verrucosa budidaya tambak dengan perlakuan konsentrasi alkali pada umur panen yang berbeda. Jurnal Pengolahan dan Bioteknologi Hasil Perikanan. 3(4): 98–105 (2014). [Google Scholar]
- Kawaroe M., Hasanudin U., Krisye. Pencernaan anaerobik makroalga Gracilaria sp. pada sistem batch untuk memproduksi bio-metana. Journal of Tropical Marine Science and Technology. 8 (2): 595–603 (2016). [Google Scholar]
- Zakaria N.Z.I., Zhen A.W., Hassan S.M., Zakaria Z. 2020. Optimization on fermentation of seaweed (Gracilaria sp.) as feedstock for bioethanol production by Saccharomyces cerevisiae. In IOP Conference Series: Materials Science and Engineering. 932(1): 1–8 (2020). [Google Scholar]
- Chan P.T., Matanjun P. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chemistry. 16:1–37 (2016). [Google Scholar]
- Sabili S. 2016. Potensi dan karakterisasi rumput laut Gracilaria verrucossa (below standard) sebagai bahan baku bioetanol [skripsi]. Bogor (ID): Institut Pertanian Bogor [Google Scholar]
- Aprilyanti S., Suryani F., Pratiwi I. Optimasi waktu hidrolisis dan volume enzim pada proses hidrolisis enzimatis selulosa jerami padi. Indonesian Journal of Industrial Research. 2(2): 78–86 (2019). [Google Scholar]
- Tayyab M., Noman A., Islam W., Waheed S., Arafat Y., Ali F., … Lin, W. Bioethanol production from lignocellulosic biomass by environmentally friendly pretreatment methods: a review. Applied Ecology & Environmental Research. 16(1) (2018). [Google Scholar]
- Wadi A., Ahmad A., Tompo M., Hasyim H., Tuwo A., Nakajima M., Karim H. 2019. Production of bioethanol from seaweed, Gracilaria verrucosa and Eucheuma cottonii, by simultaneous saccharification and fermentation methods. In Journal of Physics: Conference Series. 1341(3): 1–9 (2019). [Google Scholar]
- Habibah F., Kusuma S.B.W., Wijayati N. Produksi substrat fermentasi bioetanol dari alga merah Gracilaria verrucosa. Indonesian Journal of Chemical Science. 5(1): 36–41 (2016). [Google Scholar]
- Lestari M.D., Sudarmin S., Harjono H. Ekstraksi selulosa dari limbah pengolahan agar menggunakan larutan NaOH sebagai prekursor bioetanol. Indonesian Journal of Chemical Science. 7(3): 236–241 (2018). [Google Scholar]
- Maneein S., Milledge J.J., Nielsen B.V., Harvey P.J. A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation. 4(4): 100 (2018). [Google Scholar]
- Zulferiyenni Z., Hidayati S. Chemical properties of seaweed solid waste from purification using H2O2 and NaOH. In Proceedings of the National Seminar on Development Technology Agriculture. 141–148 (2016). [Google Scholar]
- Stevulova N., Cigasova J., Estokova A., Terpakova E., Geffert A., Kacik F., Singovszka E., Holub M. Properties characterization of chemically modified hemp hurds. Journal of Materials. 7, 8131–8150 (2014). [Google Scholar]
- Meng F., Wang G., Du X., Wang Z., Xu S., Zhang Y. Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Composites Part B: Engineering. 160: 341–347 (2019). [Google Scholar]
- Duan L., Yu W., Li Z. Analysis of structural changes in jute fibers after peracetic acid treatment. Journal of Engineered Fibers and Fabrics. 12:33–42 (2017). [Google Scholar]
- Paschoal G.B., Muller C.M.O., Carvalho G.M., Tischer C.A., Mali S. 2015. Isolation and characterization on nanofibrillated cellulose from oat hulls. Quimica Nova. 38(4): 478–482 9 (2015). [Google Scholar]
- Nguyen T.H., Ra C.H., Sunwoo I., Jeong G.T., Kim S.K. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioprocess and Biosystems Engineering. 40: 529–536 (2017). [Google Scholar]
- Wu F.C., Wu J.Y., Liao Y.J., Wang M.Y., Shih L. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresource Technology. 156: 123–131 (2014). [Google Scholar]
- Kolo S.M.D., Obenu N.M., Tuas MYC. Pengaruh praperlakuan makroalga Ulva Reticulata menggunakan microwave irradiation untuk produksi bioetanol. Jurnal Kimia. 212 (2021). [Google Scholar]
- Maharani D.M., Rosyidin K. Efek praperlakuan microwave-naoh pada tepung gedebog pisang kepok terhadap yield selulosa. Agritech. 38(2): 133–139 (2018). [Google Scholar]
- Adini S., Kusdiyantini E., Budiharjo A. Production of bioethanol from seaweed and waste for Gracilaria sp. with different saccharification methods. Bioma. 16(2): 65–75 (2015). [Google Scholar]
- Sutini S., Widihastuty Y.R., Ramadhani A.N. Hidrolisis lignoselulosa dari agricultural waste sebagai optimasi produksi fermentable sugar. Equilibrium Journal of Chemical Engineering. 3(2): 59–68 (2019). [Google Scholar]
- Lee H.V., Hamid S.B.A., Zain S.K. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal. 2014: 1–20 (2014). [Google Scholar]
- Kurniaty I., Ummul H.H., Yustiana D., Isnaini F.M. Proses delignifikasi menggunakan NaOH dan amonia (NH3) pada tempurung kelapa. Jurnal Integrasi Proses. 6(4): 197–201 (2017). [Google Scholar]
- Nawawi M.I.S., Mardawati E., Fitriana H.N., Amanda P. Evaluation of pretreatment and enzymatic hydrolysis stages toward oil palm empty fruit bunches (OPEFB) for xylose and glucose production. Biomass Biorefinery and Bioeconomy. 1(1): 9–13 (2023). [Google Scholar]
- Setyaningsih D., Hidayat A., Aryanti E.Y.V., Muna N. Alkaline pre-treatment of Gelidium Latifolium and Caulerpa Racemosa for bioethanol production. In IOP Conference Series: Earth and Environmental Science. 309 (1): 012005 (2019). [Google Scholar]
- Muryanto M., Chasanah E., Sudiyani Y., Uju U., Bardant T.B., Triwahyuni E., … Das A.K. Characterization of solid waste biomass of agar processing plants and scale-up production of bioethanol. Biomass Conversion and Biorefinery. 1–10 (2023). [Google Scholar]
- Sriana T., Dianpalupidewi T., Ma S., Nata I.F. Pengaruh konsentrasi sodium hydroxide (NaOH) pada proses delignifikasi kandungan lignoselulosa serat (fiber) siwalan (borassus flabellifer) sebagai bahan dasar pembuatan bioetanol. Buletin Profesi Insinyur. 4(2): 49–52 (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.