Open Access
Issue
BIO Web Conf.
Volume 148, 2024
International Conference of Biological, Environment, Agriculture, and Food (ICoBEAF 2024)
Article Number 01006
Number of page(s) 12
Section Biological
DOI https://doi.org/10.1051/bioconf/202414801006
Published online 09 January 2025
  • R.A.S. Santos, A.J. Ferreira, T. Verano-Braga, and M. Bader, Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin–angiotensin system. J. of Endocrinol. 216, R1 (2012) [Google Scholar]
  • G.A. Mensah, G.A. Roth, and V. Fuster, The Global Burden of Cardiovascular Diseases and Risk Factors. J. of the American College of Cardiol. 74, 2529 (2019) [CrossRef] [Google Scholar]
  • R. Chen, B. Ovbiagele, and W. Feng, Diabetes and stroke: Epidemiology, pathophysiology, pharmaceuticals and outcomes. The American J. of the Med. Sci. 351, 380 (2016) [CrossRef] [Google Scholar]
  • A.S.E. Silva, K. Silveira, A. Ferreira, and M. Teixeira, ACE2, angiotensin‐(1‐7) and Mas receptor axis in inflammation and fibrosis. British J. of Pharm. 169, 477 (2013) [CrossRef] [PubMed] [Google Scholar]
  • G.A. Favre, V.L.M. Esnault, and E. Van Obberghen, Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. AJP Endocrinol. and Metabolism. 308, E435 (2015) [CrossRef] [PubMed] [Google Scholar]
  • JL. Grobe, et al., Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). American J. of Phys. - Heart and Circulat. Physiol. 292, H736 (2007) [Google Scholar]
  • A. Salama, D. Mansour, and R. Hegazy, The cardio and renoprotective role of ginseng against epinephrine-induced myocardial infarction in rats: Involvement of angiotensin II type 1 receptor/protein kinase C. Toxicol. Reports. 8, 908 (2021) [CrossRef] [Google Scholar]
  • M. Li et al., Novel AT2R agonist, β-Pro7Ang III, is cardio- and vaso-protective in diabetic spontaneously hypertensive rats. Biomed. and Pharm. 165, 115238 (2023) [CrossRef] [Google Scholar]
  • M. Sánchez-Aguilar et al., Nonclassical axis of the renin-angiotensin system and neprilysin: Key mediators that underlie the cardioprotective effect of PPAR-alpha activation during myocardial ischemia in a metabolic syndrome model. PPAR Res. 2020, 1 (2020) [CrossRef] [Google Scholar]
  • V. Sukumaran et al., Olmesartan, an AT1 antagonist, attenuates oxidative stress, endoplasmic reticulum stress and cardiac inflammatory mediators in rats with heart failure induced by experimental autoimmune myocarditis. Int. J. of Biolog. Sci. 7, 154 (2011) [CrossRef] [Google Scholar]
  • I.T.N. Nguyen et al., Cardiac protection by oral sodium thiosulfate in a rat model of L- NNA-Induced heart disease. Frontiers in Pharm. 12, (2021) [Google Scholar]
  • M.A. Salem, S.M. Ezzat, K.A. Ahmed, S. Alseekh, A.R. Fernie, R.M. Essam, A comparative study of the antihypertensive and cardioprotective potentials of hot and cold aqueous extracts of hibiscus sabdariffa L. in relation to their metabolic profiles. Frontiers in Pharm. 13, (2022) [CrossRef] [Google Scholar]
  • K.C. Silva, M.A.B. Rosales, S.K. Biswas, J.B.L. De Faria, and J.M.L. De Faria, Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes. 58, 1382 (2009) [CrossRef] [PubMed] [Google Scholar]
  • R.W. Regenhardt et al., Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke. Neuropharm. 71, 154 (2013) [CrossRef] [Google Scholar]
  • A.P. Mecca et al., Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Experiment. Physiol. 96, 1084 (2011) [CrossRef] [Google Scholar]
  • M.J. Durand, G. Raffai, B.D. Weinberg, J.H. Lombard, Angiotensin-(1-7) and low- dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. American J. of Physiol. - Heart and Circulat. Physiol. 299, H1024 (2010) [Google Scholar]
  • M.S. Ola, M.M. Ahmed, H.M. Abuohashish, S.S. Al-Rejaie, A.S. Alhomida, Telmisartan ameliorates neurotrophic support and oxidative stress in the retina of streptozotocin-induced diabetic rats. Neurochem. Res. 38, 1572 (2013) [CrossRef] [PubMed] [Google Scholar]
  • R.W. Regenhardt et al., Centrally administered angiotensin-(1–7) increases the survival of stroke prone spontaneously hypertensive rats. 99, 442 (2020) [Google Scholar]
  • B.W.N. Balasuriya, and H.P.V. Rupasinghe, Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct. Foods in Health and Disease. 1, 172 (2011) [CrossRef] [Google Scholar]
  • A. Krüger-Genge, A. Blocki, R.P. Franke, and J. Jung, Vascular endothelial cell biology: An update. International J. of Molecul. Sci. 20, 4411 (2019) [CrossRef] [Google Scholar]
  • S. Singh et al., Discontinuation of antihypertensive medications on the outcome of hospitalized patients with severe acute respiratory syndrome-coronavirus 2. hypertension (Dallas, Tex : 1979). 78, 165 (2021) [CrossRef] [PubMed] [Google Scholar]
  • K. Urbanek et al., Dapagliflozin protects the kidney in a non-diabetic model of cardiorenal syndrome. Pharm. Res. 188, 106659 (2023) [CrossRef] [Google Scholar]
  • A. Harvey, A.C. Montezano, R.A. Lopes, F. Rios, and R.M. Touyz, Vascular fibrosis in aging and hypertension: Molecular mechanisms and clinical implications. Canadian J. of Cardio. 32, 659 (2016) [CrossRef] [Google Scholar]
  • M.G. Scioli et al., Oxidative stress and new pathogenetic mechanisms in endothelial dysfunction: Potential diagnostic biomarkers and therapeutic targets. J. of Clin. Med. 9, 1995 (2020) [CrossRef] [Google Scholar]
  • K. Mokretar, H. Velinov, A. Postadzhiyan, M. Apostolova, Association of polymorphisms in endothelial nitric oxide synthesis and Renin-angiotensin-aldosterone system with developing of coronary artery disease in Bulgarian patients. Gen. Test. and Mol. Biomark. 20, 67 (2016) [CrossRef] [PubMed] [Google Scholar]
  • H. Liu et al., Baicalin attenuates angiotensin II-induced blood pressure elevation and modulates MLCK/p-MLC signaling pathway. Biomed. & Pharm. 143, 112124 (2021) [CrossRef] [Google Scholar]
  • A. Ancion, J. Tridetti, M.L. -N. Trung, C. Oury, and P. Lancellotti, A review of the role of bradykinin and nitric oxide in the cardioprotective action of angiotensin-converting enzyme inhibitors: Focus on perindopril. Cardio. and Therapy. 8, 179 (2019) [CrossRef] [PubMed] [Google Scholar]
  • D. Cao et al., The non-cardiovascular actions of ACE. Peptides. 152, 170769 (2022) [CrossRef] [Google Scholar]
  • W.M.C. Awata et al., Vascular injury associated with ethanol intake is driven by AT1 receptor and mitochondrial dysfunction. Biomed. & Pharmacother. 169, 115845 (2023) [CrossRef] [Google Scholar]
  • D. Okwan-Duodu et al., Overexpression of myeloid angiotensin-converting enzyme (ACE) reduces atherosclerosis. Biochem. and Biophysic. Res. Comm. 520, 573 (2019) [CrossRef] [Google Scholar]
  • G. Ceballos, G. Gutiérrez-Salmeán, E. Meaney, The vascular endothelium: A review series I. Basic aspects of the vascular endothelium. Revista Mexicana de Cardiologi. 26 (2015) [Google Scholar]
  • M. Vijayan et al., ACE-II genotype and I allele predicts ischemic stroke among males in south India. Meta Gene. 2, 661 (2014) [CrossRef] [Google Scholar]
  • C.M. Ferrario, Cardiac remodelling and RAS inhibition. Therap. Advanc. in Cardiovas. Disease. 10, 162 (2016) [CrossRef] [PubMed] [Google Scholar]
  • T. Huh, E. Larouche-Lebel, K.A. Loughran, and M.A. Oyama, Effect of angiotensin receptor blockers and angiotensin-converting enzyme 2 on plasma equilibrium angiotensin peptide concentrations in cats with heart disease. J. of Veterinar. Intern. Med. 35, 33 (2021) [CrossRef] [PubMed] [Google Scholar]
  • V.B. Patel, J.C. Zhong, M.B. Grant, and G.Y. Oudit, Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circulat. Res. 118, 1313 (2016) [CrossRef] [PubMed] [Google Scholar]
  • S. Zhou, W. Sun, Z. Zhang, and Y. Zheng, The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidat. Med. and Cell. Longevity. 2014, 1 (2014) [Google Scholar]
  • H. Ashrafian et al., Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metabolism. 15, 361 (2012) [CrossRef] [Google Scholar]
  • S. Park, C.S. Kim, J. Min, S.H. Lee, and Y.S. Jung, A high-fat diet increases oxidative renal injury and protein glycation in D-galactose-induced aging rats and its prevention by Korea red Ginseng. J. of Nutrition. Sci. and Vitaminol. 60, 159 (2014) [CrossRef] [PubMed] [Google Scholar]
  • Y. Ma, J. Yuan, J. Hu, W. Gao, Y. Zou, and J. Ge. ACE inhibitor suppresses cardiac remodeling after myocardial infarction by regulating dendritic cells and AT 2 receptor-mediated mechanism in mice. Biomedicine and Pharmacotherapy. 114, 108660 (2019) [CrossRef] [Google Scholar]
  • U.M. Steckelings et al., The past, present and future of angiotensin II type 2 receptor stimulation. JRAAS – J. of the Renin-Angiotensin-Aldosterone Syst. 11, 67 (2010) [CrossRef] [PubMed] [Google Scholar]
  • W. Chen et al., Cardioprotection of cortistatin against isoproterenol-induced myocardial injury in rats. Annals of Translation. Med. 8, 309 (2020) [CrossRef] [Google Scholar]
  • B.S.M. Chow et al., The angiotensin II type 2 receptor agonist compound 21 is protective in experimental diabetes-associated atherosclerosis. Diabetol. 59, 1778 (2016) [CrossRef] [PubMed] [Google Scholar]
  • K. Fuse et al., Polarity of helper T cell subsets represents disease nature and clinical course of experimental autoimmune myocarditis in rats. Clinic. and Experiment. Immunol. 134, 403 (2003) [CrossRef] [PubMed] [Google Scholar]
  • Y. Wei et al., NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat. Hypertensi. 50, 384 (2007) [CrossRef] [PubMed] [Google Scholar]
  • J.A. Byrne et al., Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin ii-induced cardiac hypertrophy. Circulat. Res. 93, 802 (2003) [CrossRef] [PubMed] [Google Scholar]
  • K.M. Sowers, and M.R. Hayden, Calcific uremic arteriolopathy: Pathophysiology, reactive oxygen species and therapeutic approaches. Oxidat. Med. and Cellular Longevity. 3, 109 (2010) [CrossRef] [PubMed] [Google Scholar]
  • J. Huang, D. Wang, J. Zheng, X. Huang, and H. Jin, Hydrogen sulfide attenuates cardiac hypertrophy and fibrosis induced by abdominal aortic coarctation in rats. Molecul. Med. Report. 5, 923 (2012) [CrossRef] [PubMed] [Google Scholar]
  • N.L.R. Mikusic, A.M. Pineda, and M.M. Gironacci, Angiotensin-(1-7) and Mas receptor in the brain. Explor. of Med. 2, 268 (2021) [CrossRef] [Google Scholar]
  • M.C. Chappell, A.C. Marshall, E.M. Alzayadneh, H.A. Shaltout, and D.I. Diz, Update on the angiotensin converting enzyme 2-angiotensin (1-7)-Mas receptor axis: Fetal programing, sex differences, and intracellular pathways. Frontiers in Endocrinol. 5, (2014) [Google Scholar]
  • S. Andone, Z. Bajko, A. Motataianu, S. Maier, L. Barcutean, and R. Balasa, Neuroprotection in stroke—focus on the Renin-Angiotensin system: A systematic review. Int. J. of Molecul. Sci. 23, 3876 (2022) [CrossRef] [Google Scholar]
  • S. Villapol and J.M. Saavedra, Neuroprotective effects of angiotensin receptor blockers. American J. of Hypertensi. 28, 289 (2015) [CrossRef] [PubMed] [Google Scholar]
  • K. Schwengel et al., Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice. J. of Molecul. Med. 94, 957 (2016) [CrossRef] [PubMed] [Google Scholar]
  • K.D. Da Silveira et al., Anti-inflammatory effects of the activation of the angiotensin- (1–7) receptor, Mas, in experimental models of arthritis. The J. of Immunol. 185, 5569 (2010) [CrossRef] [PubMed] [Google Scholar]
  • L.R. Trindade, D.V.T. Da Silva, D.D.S. Baião, and V.M.F. Paschoalin, Increasing the power of polyphenols through nanoencapsulation for adjuvant therapy against cardiovascular diseases. Molecul. 26, 4621 (2021) [CrossRef] [Google Scholar]
  • D.M. Bennion et al., Neuroprotection by post-stroke administration of an oral formulation of angiotensin-(1–7) in ischaemic stroke. Experiment. Physiol. 103, 916 (2018) [CrossRef] [PubMed] [Google Scholar]
  • B.A. Bergmark et al., Klotho, fibroblast growth factor-23, and the renin-angiotensin system - an analysis from the PEACE trial. Europ. J. of Heart Failur. 21, 462 (2019) [CrossRef] [PubMed] [Google Scholar]
  • A.B. Sanz et al., NF-κB in renal inflammation. J. of the American Societ. of Nephrol. 21, 1254 (2010) [CrossRef] [PubMed] [Google Scholar]
  • M.D. Ginsberg, Adventures in the pathophysiology of brain ischemia: Penumbra, gene expression, neuroprotection: The 2002 Thomas Willis lecture. Stroke. 34, 214 (2003). [CrossRef] [PubMed] [Google Scholar]
  • B. J. Schaller, M. Bähr, and M. Buchfelder, Pathophysiology of brain ischemia: Penumbra, gene expression, and future therapeutic options. Europ. Neurol. 54, 179 (2006) [Google Scholar]
  • J. Li et al., Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J. 19, 1 (2005) [CrossRef] [PubMed] [Google Scholar]
  • M.R. Law, J.K. Morris, and N.J. Wald, Use of blood pressure lowering drugs in the prevention of cardiovascular disease: Meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 338, b1665 (2009) [CrossRef] [PubMed] [Google Scholar]
  • S.H.H. Chan, C.-W.J. Wu, A.Y.W. Chang, K.-S. Hsu, and J.Y.H. Chan, Transcriptional upregulation of brain-derived neurotrophic factor in rostral ventrolateral medulla by angiotensin II: Significance in superoxide homeostasis and neural regulation of arterial pressure. Circula. Res. 107, 1127 (2010) [CrossRef] [PubMed] [Google Scholar]
  • S. Zacchigna, D. Lambrechts, and P. Carmeliet, Neurovascular signalling defects in neurodegeneration. Nat. Rev. Neurosci. 9, 169 (2008) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.