Open Access
Issue |
BIO Web Conf.
Volume 148, 2024
International Conference of Biological, Environment, Agriculture, and Food (ICoBEAF 2024)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 12 | |
Section | Agriculture | |
DOI | https://doi.org/10.1051/bioconf/202414803002 | |
Published online | 09 January 2025 |
- M. Briga, E. Koetsier, J.J. Boonekamp, B. Jimeno, and S. Verhulst, Food availability affects adult survival trajectories depending on early developmental conditions in Proceedings of the Royal Society B: Biological Sciences 284, 20162287 (2017) [CrossRef] [PubMed] [Google Scholar]
- B.N. Ekwueme and J.C. Agunwamba, Trend analysis and variability of air temperature and rainfall in regional river basins. Civ. Eng. J. 7, 816 (2021) [CrossRef] [Google Scholar]
- L.S. Pereira, Water, agriculture and food: challenges and issues. Water Resour. Manag. 31, 2985 (2017) [CrossRef] [Google Scholar]
- W. Jiao, L. Wang, W.K. Smith, Q. Chang, H. Wang, and P. D’Odorico, Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, (2021) [Google Scholar]
- C. Ingrao, R. Strippoli, G. Lagioia, and D. Huisingh, Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 9, e18507 (2023) [CrossRef] [PubMed] [Google Scholar]
- Y. Apriyana et al., The integrated cropping calendar information system: A coping mechanism to climate variability for sustainable agriculture in Indonesia. Sustainability 13, 6495 (2021) [CrossRef] [Google Scholar]
- P.K. Dhillon and B. Tanwar, Rice bean: A healthy and cost-effective alternative for crop and food diversity. Food Secur. 10, 525 (2018) [CrossRef] [Google Scholar]
- M.I. Alshelmani, E.A. Abdalla, U. Kaka, and M. Abdul Basit, Nontraditional feedstuffs as an alternative in poultry feed in Advances in Poultry Nutrition Research (IntechOpen, 2021) [Google Scholar]
- H. Kebede, R. Sui, D.K. Fisher, K.N. Reddy, N. Bellaloui, and W.T. Molin, Corn yield response to reduced water use at different growth stages. Agric. Sci. 05, 1305 (2014) [Google Scholar]
- K.P. Panigrahi, H. Das, A.K. Sahoo, and S.C. Moharana, Maize leaf disease detection and classification using machine learning algorithms. in Advances in intelligent systems and computing, (Springer, 2020) [Google Scholar]
- A.A. Qaffas, M.-A.B. HajKacem, C.-E.B. Ncir, and O. Nasraoui, An Explainable Artificial intelligence Approach for Multi-Criteria ABC item classification. J. of Theoretical and Appl. Electron. Commer. Res. 18, 848 (2023) [CrossRef] [Google Scholar]
- M. Mahlayeye, R. Darvishzadeh, and A. Nelson, Cropping patterns of annual crops: A remote sensing review. Remote. Sens. 14, 2404 (2022) [CrossRef] [Google Scholar]
- A. Nasrallah et al., Sentinel-1 data for winter wheat phenology monitoring and mapping. Remote. Sens. 11, 2228 (2019) [CrossRef] [Google Scholar]
- R. Valcarce-Diñeiro, B. Arias-Pérez, J.M. Lopez-Sanchez, and N. Sánchez, Multi-temporal dual- and quad-polarimetric synthetic aperture radar data for CROP-type mapping. Remote. Sens. 11, 1518 (2019) [CrossRef] [Google Scholar]
- G. A. Abubakar et al., Mapping maize fields by using Multi-Temporal Sentinel-1A and Sentinel-2A images in Makarfi, northern Nigeria, Africa. Sustainability 12, 2539 (2020) [CrossRef] [Google Scholar]
- L. Gao, J. Song, X. Liu, J. Shao, J. Liu, and J. Shao, Learning in high-dimensional multimedia data: the state of the art. Multimed. Syst. 23, 303 (2015) [Google Scholar]
- F. Masood, W.U. Khan, S.U. Jan, and J. Ahmad, AI-Enabled traffic control prioritization in Software-Defined IoT networks for smart agriculture. Sens. 23, no. 19, 8218 (2023) [CrossRef] [Google Scholar]
- M. Ozcan and S. Peker, A classification and regression tree algorithm for heart disease modeling and prediction. Healthc. Analytics 3, 100130 (2022) [Google Scholar]
- S. Kalogiannidis, Impact of employee motivation on organizational performance. a scoping review paper for public sector. Strategic J. of Bus. & Ch. Manag. 8, (2021) [Google Scholar]
- K.S.K. Patro, V.K. Yadav, V.S. Bharti, A. Sharma, A. Sharma, and T. Senthilkumar, IoT and ML approach for ornamental fish behaviour analysis. Scientific Reports 13, (2023) [Google Scholar]
- S. Chatfield, Recommendations for secondary analysis of qualitative data. The Qualitative Rep. 25, 833 (2020) [Google Scholar]
- D. Iskamto, Role of products element in determining decisions of purchase. Inovbiz J. Inov. Bis. 8, 200 (2020) [CrossRef] [Google Scholar]
- K. Reichardt and L.C. Timm, How plants absorb nutrients from the soil. in Springer eBooks, (Springer, 2019) [Google Scholar]
- R.T. Handayanto and H. Herlawati, Machine learning berbasis desktop dan web dengan metode jaringan syaraf tiruan untuk sistem pendukung keputusan. J. Komtika (Komp. Dan Inform.) 4, 15 (2020) [CrossRef] [Google Scholar]
- A. Alwiyah, T.T. Louangdy, and A. Yolandari, Relation of relationship between research theory and variable with management case study. Aptisi Transac. on Manag. (ATM) 2, 70 (2018) [CrossRef] [Google Scholar]
- G. Naidu, T. Zuva, and E.M. Sibanda, A review of evaluation metrics in Machine learning Algorithms. Lect. Not. in Net. and Syst. 724, 15 (2023) [Google Scholar]
- S.B. Sangeetha, N.R.W. Blessing, N. Yuvaraj, and J.A. Sneha, Improving the training pattern in Back-Propagation neural networks using Holt-Winters’ seasonal method and gradient boosting model. in Algorithms for intelligent systems, (Springer, 2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.