Open Access
Issue
BIO Web Conf.
Volume 148, 2024
International Conference of Biological, Environment, Agriculture, and Food (ICoBEAF 2024)
Article Number 04013
Number of page(s) 15
Section Food
DOI https://doi.org/10.1051/bioconf/202414804013
Published online 09 January 2025
  • ICO HPV Information Centre, Institute Catala d’Oncologia Information Centre on HPV and Cancer, Human Papillomavirus Related Diseases in Indonesia. Summary Report. Barcelona: ICO HPV Information: ICO HPV d’Oncologia. Information Centre-Institut Català (2021). [Google Scholar]
  • M.I. Estev˜ao-Costa, R. Sanz-Soler, B. Johanningmeier, & J.A. Eble, Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int. J. of Biochem. and Cell Biol. 104, 94 (2018) [CrossRef] [Google Scholar]
  • B.C. Offor, & L.A. Piater, Snake venom toxins: Potential anticancer therapeutics. J. of Appl. Toxicol. 44, 666 (2024) [CrossRef] [PubMed] [Google Scholar]
  • A.K. Al-Asmari, A. Riyasdeen, M.H. Al-Shahrani, & M. Islam, Snake venom causes apoptosis by increasing the reactive oxygen species in colorectal and breast cancer cell lines. Oncotargets and Ther. 9, 6485 (2016) [CrossRef] [Google Scholar]
  • H.T. Yalcın, M.O. Ozen, B. Gocmen, & A. Nalbantsoy, Effect of Ottoman viper (Montivipera xanthina (Gray, 1849)) venom on various cancer cells and on microorganisms. Cytotechnology. 66, 87 (2014) [CrossRef] [PubMed] [Google Scholar]
  • Arifin, Management of tomcat beetles as predators of plant pests and transmitters of dermatitis. Agric. Innov. Develop. 5, 58 (2012) [Google Scholar]
  • A. Asgar, et. al, Study on paederus dermatitis outbreak in a suburban teaching research hospital, Kanchipuram, India. Med. Sci. 2, 764 (2013) [Google Scholar]
  • D.M. Elston, Bites and stings. In: Bolognia JL, Schaffer JV, Cerroni L (eds). Dermatology 2, 4th edn. Elsevier. 1516 (2018) [Google Scholar]
  • K. Karthikeyan, A. Kumar, Paederus dermatitis. Indian J. Dermatol. Venereol. Leprol. 83, 424 (2017) [CrossRef] [PubMed] [Google Scholar]
  • J. Mammino, Paederus dermatitis: an outbreak on a medical mission boat in the Amazon. J. Clin. Aesthet. Dermatol. 4, 44 (2014) [Google Scholar]
  • G. Singh, and S.Y. Ali, Paederus dermatitis. Indian J. Dermatol. Venerol. Leprol. 73,13 (2007) [CrossRef] [PubMed] [Google Scholar]
  • M.M. Kumar, et al. Role of estrogen receptor alpha in human cervical cancer-associated fibroblasts: a transcriptomic study. Tumor Biol. 37, 4409 (2016) [CrossRef] [PubMed] [Google Scholar]
  • Z.Y. Wang, & L. Yin, Estrogen receptor alpha-36 (ER-Alpha36): A new player in human breast cancer. Mol. Cell Endocrinol. 418, 193 (2015) [CrossRef] [Google Scholar]
  • Q. Sun, Y. Liang, T. Zhang, K. Wang, X. Yang, ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells. Biochem. and Biophysic. Res. Comm. 487, 625 (2017) [CrossRef] [Google Scholar]
  • R.A. Chaudhri, A. Hadadi, K.S. Lobachev, Z. Schwartz, B.D. Boyan, Estrogen receptor- alpha 36 mediates the anti-apoptotic effect of estradiol in triple negative breast cancer cells via a membrane-associated mechanism. Biochim. Biophys. Acta. 1843, 2796 (2014) [CrossRef] [Google Scholar]
  • J. Youjin, et. al., The estrogenic hormone effect in gastric cancer. J. Clin. Oncol. 36, 85 (2018) [Google Scholar]
  • S. Zhang, C. Qiu, L. Wang, Q. Liu, & J. Du, The elevated level of ERalpha36 is correlated with nodal metastasis and poor prognosis in lung adenocarcinoma. Steroids. 87, 39 (2014) [CrossRef] [Google Scholar]
  • N. Schwartz, R.A. Chaudhri, A. Hadadi, Z. Schwartz, & B.D. Boyan, 17Beta-estradiol promotes aggressive laryngeal cancer through membrane-associated estrogen receptor- alpha 36. Horm. Cancer. 5, 22 (2014) [CrossRef] [PubMed] [Google Scholar]
  • A. Verma, N. Schwartz, D.J. Cohen, B.D. Boyan, Z. Schwartz, Estrogen signaling and estrogen receptors as prognostic indicators in laryngeal cancer. Steroids. 152, 108498 (2019) [CrossRef] [Google Scholar]
  • A.K. Shiau, D. Barstad, P.M. Loria, L. Cheng, P.J. Kushner, D.A. Agard, & G. L. Greene, The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927 (1998) [CrossRef] [PubMed] [Google Scholar]
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, & P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advan. Drug Del. Rev. 23, 3 (1997) [CrossRef] [Google Scholar]
  • K.R. Bachtiar, S. Susanti, & R. Mardianingrum, Test of anti-inflammatory activity of compounds in bangle rhizome essential oil (Zingiber purpureum Roxb) in silico. J. of Pharm. 4, (2021) [CrossRef] [Google Scholar]
  • M. Suherman, A. Sadino, F.A. Noviartika, & B. Permana., 3d-Pharmacophore modeling and molecular docking to study the potential anti-cancer agent from Ficus septica Burm. L. Pharmacoscript 5, 24 (2022) [CrossRef] [Google Scholar]
  • T. Rahayu, A.P.R. Intan, M.N. Jadid, Metabolite profile of Kesambi Leaf (Schleichera oleosa) based on histochemical and in silico analysis. Metamorph. J. of Biol. Sci. 8, 156 (2021) [Google Scholar]
  • M. Muchtaridi, D. Dermawan., M. Yusuf, Prediction of alpha mangostin and its derivatives against estrogen receptor alpha, J. Young Pharm. 10, 252 (2018) [CrossRef] [Google Scholar]
  • E.M. Terefe, & A. Ghosh, Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of phytochemicals isolated from croton dichogamus against the HIV-1 reverse transcriptase. Bioinform. Biol. Insights. 16, (2022) [CrossRef] [Google Scholar]
  • O. Daoui, S. Elkhattabi, S. Chtita, R. Elkhalabi, H. Zgou, & A.T. Benjelloun, QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7- tetrahydrobenzo[D]-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon 7, e07463 (2021) [CrossRef] [PubMed] [Google Scholar]
  • S. Lee, M.G. Barron, Structure based understanding of binding affinity and mode of estrogen receptor α agonists and antagonists. PLoS ONE 12, e0169607 (2017) [CrossRef] [PubMed] [Google Scholar]
  • B. Ramachandran, S. Kesavan, & T. Rajkumar, Molecular modeling and docking of small molecule inhibitors against NEK2. Biomed. Informatics. 12, 62 (2016) [Google Scholar]
  • X.L. Ma, C. Chen, & J. Yang, Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol. Sin. 26, 500 (2005) [CrossRef] [PubMed] [Google Scholar]
  • H.Y. Chen, Y.M. Yang, R. Han, M. Noble, MEK1/2 inhibition suppresses tamoxifen toxicity on CNS glial progenitor cells. J. Neurosci. 33, 15069 (2013) [CrossRef] [PubMed] [Google Scholar]
  • B.T. Purwanto, Siswandono, D. Kesuma, T. Widiandani, & I. Siswanto, Molecular modeling, admet prediction, synthesis and the cytotoxic activity from the novel N-(4-Tert-Butylphenylcarbamoyl) benzamide against hela. Rasayan J. of Chem. 14, 1341 (2021) [CrossRef] [Google Scholar]
  • Y. Nusantoro, & A. Fadlan, Analysis of drug-like properties, ADMET prediction, and molecular tethering of isatinyl-2-aminobenzoylhydrazone and its transition metal complexes Co(II), Ni(II), Cu(II), Zn(II) against BCL2-XL. Akta Kim. Indonesia. 5, 114 (2020) [Google Scholar]
  • M. Aryal, et al. Effects on P-Glycoprotein expression after blood-brain barrier disruption using focused ultrasound and microbubbles. PLOS ONE 12, e0166061 (2017) [CrossRef] [PubMed] [Google Scholar]
  • R. Hu, L. Hilakivi-Clarke, & R. Clarke, Molecular mechanisms of tamoxifen-associated endometrial cancer (Review). Oncol. Lett. 9, 1495 (2015) [CrossRef] [PubMed] [Google Scholar]
  • J. Yao, K. Deng, J. Huang, R. Zeng, and J. Zuo, Progress in the understanding of the mechanism of tamoxifen resistance in breast cancer. Front. Pharmacol. 11, 592912 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.