Open Access
Issue |
BIO Web Conf.
Volume 151, 2025
International Conference “Mountains: Biodiversity, Landscapes and Cultures” (MBLC-2024)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 10 | |
Section | Agriculture and Ecology | |
DOI | https://doi.org/10.1051/bioconf/202515101008 | |
Published online | 21 January 2025 |
- N.I. Vavilov, 1987 Origin and geography of cultivated plants (Nauka, Moscow, 1987) [Google Scholar]
- V.F.Dorofeev, A.A.Filatenko, E.F.Migushova, et al., Flora of Cultivated Plants, (Kolos, St. Petersburg, 1979) [Google Scholar]
- M. Nawaz, J. Sun, S. Shabbir, W.A. Khattak, G. Ren, X. Nie, Y. Bo, Q. Javed, D. Du, C. Sonne, A review of plants strategies to resist biotic and abiotic environmental stressors. Sci. Total Environ. 165832 (2023). https://doi.org/10.1016/j.scitotenv.2023.165832 [Google Scholar]
- V. Cruz-López, C.A. Granados-Echegoyen, R. Pérez-Pacheco, C. Robles, J. Álvarez-Lopeztello, I. Morales, L.M. Bastidas-Orrego, F. Garcia-Perez, J. Dorantes-Jimenes, N. Landero-Valenzuela, Plant diversity as a sustainable strategy for mitigating biotic and abiotic stresses in tomato cultivation. Front. Sustain. Food Syst. 8, 1336810 (2024) [CrossRef] [Google Scholar]
- D.T. Teshome, G.E. Zharare, S. Naidoo, The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Front. Plant Sci. 11, 601009 (2020) [CrossRef] [Google Scholar]
- K.A. Stewart, Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers. Conserv. 28, 983-1001 (2019) [CrossRef] [Google Scholar]
- E. Filip, K.Woronko, E. Stępień, N. Czarniecka, An overview of factors affecting the functional quality of common wheat (Triticum aestivum L.). Inter. J. Mol. Sci. 24(8), 7524 (2023) [CrossRef] [Google Scholar]
- S.D. Battenfield, J.L. Sheridan, L.D.C.E. Silva, K.J. Miclaus, S. Dreisigacker, R.D. Wolfinger, R.J. Peña, R.P. Singh, E.W. Jackson, A.K. Fritz, et al., Breeding-assisted genomics: Applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program. PLoS ONE 13, e0204757 (2018) doi: 10.1371/journal.pone.0204757 [CrossRef] [PubMed] [Google Scholar]
- V. Dhaka, B.S. Khatkar, Effects of Gliadin/Glutenin and HMW-GS/LMW-GS Ratio on Dough Rheological Properties and Bread-Making Potential of Wheat Varieties. J. Food Qual. 38, 71–82 (2015). doi: 10.1111/jfq.12122 [CrossRef] [Google Scholar]
- P. Kettlewell, R.Byrne, S. Jeffery, Wheat area expansion into northern higher latitudes and global food security. Agricul. Ecosys. Environ. 351, 108499 (2023) [CrossRef] [Google Scholar]
- R. De Flaviis, D. Mutarutwa, G. Sacchetti, D. Mastrocola, Quantitatively unravelling the effect of altitude of cultivation on the volatiles fingerprint of wheat by a chemometric approach. Food Chem. 370, 131296 (2022) [CrossRef] [Google Scholar]
- W. Guo, M. Xin, Z. Wang, Y. Yao, Z. Hu, W. Song, K. Yu, Y. Chen, X. Wang, P. Guan, R. Appels, H. Peng, Z. Ni, Q. Sun, Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nature Commun. 11, 5085 (2020) [CrossRef] [Google Scholar]
- G.A. Slafer, P. Peltonen-Sainio, Yield trends of temperate cereals in high latitude countries from 1940 to 1998. Agricul. Food Sci. 10, 121-132 (2001) [Google Scholar]
- R. De Flaviis, V. Santarelli, G. Sacchetti, D. Mastrocola, Response of heritage and modern wheat varieties to altitude induced stresses by synthesis of volatile compounds. A multivariate statistical analysis. J. Cereal Sci. 109, 103619 (2023) [Google Scholar]
- Y. Zhao, L.Dong, C. Jiang, X. Wang, J. Xie, M.A.R. Rashid, Y. Liu, M. Li, Z. Bu, H. Wang, X. Ma, S. Sun, X. Wang, C. Bo, T. Zhou, L. Kong, Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization. BMC Biol. 18, 1-17 (2020) [CrossRef] [Google Scholar]
- F. Balfourier, S. Bouchet, S. Robert, R. De Oliveira, H. Rimbert, J. Kitt, F. Choulet, E. Paux, Consortium IWGS, Consortium B, et al., Worldwide phylogeography and history of wheat genetic diversity. Sci. Adv. 5, eaav0536 (2019) [CrossRef] [Google Scholar]
- H. Cheng, J. Liu, J. Wen, X. Nie, L. Xu, N. Chen, Z. Li, Q. Wang, Z. Zheng, M. Li, L. Cui, Z. Liu, J. Bian, Z. Wang, S. Xu, Q. Yang, R. Appels, D. Han, W. Song, Q. Sun, Frequent intra-and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 20, 1–16 (2019) [CrossRef] [Google Scholar]
- L.J. Gardiner, L.U. Wingen, P. Bailey, R. Joynson, T. Brabbs, J. Wright, J.D. Higgins, N. Hall, S. Griffiths, B.J. Clavijo, A. Hall, Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency. Genome Biol. 20, 69 (2019) [CrossRef] [Google Scholar]
- R. Brenchley, M. Spannagl, M. Pfeifer, G. L. Barker, R. D’Amore, A. M. Allen, et al., Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705-710 (2012) [CrossRef] [PubMed] [Google Scholar]
- T. Marcussen, S.R. Sandve, L. Heier, M. Spannagl, M. Pfeifer, International Wheat Genome Sequencing Consortium, and S. Praud, Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092 (2014) [CrossRef] [PubMed] [Google Scholar]
- X. Li, M.J. Scanlon, J. Yu, Evolutionary patterns of DNA base composition and correlation to polymorphisms in DNA repair systems. Nucleic Acids Res. 43, 3614–3625 (2015) [CrossRef] [PubMed] [Google Scholar]
- M. Pfeifer, K.G. Kugler, S.R. Sandve, B. Zhan, H. Rudi, T.R. Hvidsten, et al., Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345, (2014). doi: 10.1126/science.1250091 [Google Scholar]
- S. Babayeva, T. Hasanova, A. Asadova, A. Mammadova, V. Izzatullayeva, J. Nasibova, P. Manafova, E. Hajiyev, M. Abbasov, Study of genetic diversity and search for anthracnose resistance alleles in common bean (Phaseolus vulgaris L.) genotypes cultivated in Azerbaijan. Genetika 55, 841-854 (2023) [CrossRef] [Google Scholar]
- M. Abbasov, S. Babayeva, D.A. Mammadova, V. Izzatullayeva, K. Rustamov, P. Fatullayev, S. Hasanova, E. Jafarova, E. Hajiyev, R. Aliyev Evaluation of salt stress resistance in diploid wheat species. Genetika 56, 63-74 (2024) [CrossRef] [Google Scholar]
- M.S. Röder, V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy, M.W. Ganal, A microsatellite map of wheat. Genetics 149, 2007-2023 (1998) [CrossRef] [PubMed] [Google Scholar]
- D.J. Somers, P. Isaac, K. Edwards, A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.), Theor. App. Genet. 109, 1105-1114 (2004) [CrossRef] [PubMed] [Google Scholar]
- L. Zhang, G. Sun, Z. Yan, Q. Chen, Z. Yuan, X. Lan, D. Liu, Comparison of newly synthetic hexaploid wheat with its donors on SSR products. J. Genet. Genomics 34, 939-946 (2007) [CrossRef] [Google Scholar]
- J.J. Doyle, J.L. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15 (1987) [Google Scholar]
- S. Chao, W. Zhang, J. Dubcovsky, M. Sorrells, Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47, 1018–1030 (2007) [CrossRef] [Google Scholar]
- K. Liu, S.V. Muse PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21, 2128–2129 (2005) [CrossRef] [PubMed] [Google Scholar]
- X. Perrier, J.P. Jacquemoud-Collet DARwin software. http://darwin.cirad.fr/darwin. Accessed 18 Nov 2018 (2006) [Google Scholar]
- K.F.M. Salem, A.M. El-Zanaty, R.M. Esmail, Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. World J Agric. Sci. 4, 538-544 (2008) [Google Scholar]
- X. Yang, B. Tan, H. Liu, W. Zhu, L. Xu, Y. Wang, X. Fan, L. Sha, H. Zhang, J.Zeng, D. Wu, Y. Jiang, X. Hu, G. Chen, Y. Zhou, H. Kang, Genetic diversity and population structure of Asian and European common wheat accessions based on genotyping-by-sequencing. Front. Genet. 11, 580782 (2020) [CrossRef] [Google Scholar]
- J. Plaschke, M.W. Ganal, M.S. Röder, Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. App. Genet. 91, 1001-1007 (1995) [CrossRef] [PubMed] [Google Scholar]
- J. Dvorak, M.C. Luo, Z.L. Yang, Genetic evidence on the origin of Triticum aestivum L. (ICARDA, Aleppo, 1998). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.