Open Access
Issue |
BIO Web Conf.
Volume 154, 2025
15th International Conference on Global Resource Conservation (ICGRC 2024) in conjunction with the 1st International Conference on Jamu and Alternative Medicine (ICJAM 2024)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 12 | |
Section | Biotechnology and Bioprospecting | |
DOI | https://doi.org/10.1051/bioconf/202515402007 | |
Published online | 28 January 2025 |
- T. King, M. Cole, J.M. Farber, G. Eisenbrand, D. Zabaras, E.M. Fox, J.P. Hill, Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Technol. 68, 160–75 (2017). [CrossRef] [Google Scholar]
- T. Jansen, L. Claassen, I. van Kamp, D.R.M. Timmermans, All chemical substances are harmful.’public appraisal of uncertain risks of food additives and contaminants. Food Chem. Toxicol. 136, 110959 (2020). [CrossRef] [Google Scholar]
- L. Mabuza, N. Sonnenberg, N. Marx-Pienaar, Natural versus synthetic dyes: Consumers’ understanding of apparel coloration and their willingness to adopt sustainable alternatives. Resour. Conserv. Recycl. Adv. 18, 200146 (2023). [Google Scholar]
- S. Dey, B.H. Nagababu, Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chem. Adv. 1, 100019 (2022). [CrossRef] [Google Scholar]
- N. Devi, N. Winarni, I.P. Priyasana, G.A.D. Mayagita, V. Rahmadinha, K.M. Limba, A. Dewi, I.K.N. Sanjaya, N.P.L. Laksmiani, Penetapan Rhodamin B pada sampel lipstik dengan menggunakan Klt-Spektrofotodensitometri J. Kim. (Journal Chem.). 14, (2020). [Google Scholar]
- C. Lops, A. Ancona, K. Di Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hérnandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO. Appl. Catal. B Environ. 243, 629–40 (2019). [CrossRef] [Google Scholar]
- V. Unsal, M. Cicek, İ Sabancilar, Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ. Health. 36, 279–95 (2021). [CrossRef] [PubMed] [Google Scholar]
- R.N.R. Sianipar, L. Suryanegara, W. Fatriasari, E.T. Arung, I.W. Kusuma, S.S. Achmadi, N.I.W. Azelee, Z.A.A. Hamid, The role of selected flavonoids from bajakah tampala (Spatholobus littoralis Hassk.) stem on cosmetic properties: A review. Saudi Pharm. J. 31, 382–400 (2023). [CrossRef] [Google Scholar]
- H.X. Li, W. Widowati, R. Azis, S.Y. Yang, Y.H. Kim, W. Li, Chemical constituents of the Piper crocatum leaves and their chemotaxonomic significance. Biochem. Syst. Ecol. 86, 103905 (2019). [CrossRef] [Google Scholar]
- I.A. Gunawan, R. Fujii, T. Maoka, Y. Shioi, K.M.B. Kameubun, L. Limantara, T.H.P. Brotosudarmo, Carotenoid composition in buah merah (Pandanus conoideus Lam.), an indigenous red fruit of the Papua Island. J. Food Compos. Anal. 96, 103722 (2021). [CrossRef] [Google Scholar]
- H. Hamzah, S.U.T. Pratiwi, A. Jabbar, A.S. Hafifah, B.A. Al-Fajri, N. Nurhalisah, Bioactivity tracing of the ethanol extract of Bajakah Tampala (Spatholobus littoralis Hassk.) typical plant of Kalimantan Island as antibiofilm of Staphylococcus aureus. Open Access Maced. J. Med. Sci. 11, 8–14 (2023). [CrossRef] [Google Scholar]
- D. Iskandar, N. Widodo, M. Warsito, Y.P.P.A. Rollando, Phenolic content, antioxidant, cytotoxic of fractions of Spatholobus littoralis Hassk from Kalimantan, Indonesia. J. Hunan Univ. Nat. Sci. 49 (2022). [Google Scholar]
- I.N.E. Lister, C.N. Ginting, E. Girsang, E.D. Nataya, A.M. Azizah, W. Widowati, Hepatoprotective properties of red betel (Piper crocatum Ruiz and Pav) leaves extract towards H2O2-induced HepG2 cells via anti-inflammatory, antinecrotic, antioxidant potency. Saudi Pharm. J. 28, 1182–9 (2020). [CrossRef] [Google Scholar]
- S.R.S. Kamaruzaman, K.F. Kasim, M.N. Jaafar, The effect of harvesting time on the antioxidant and anti-diabetic activity of Piper crocatum (sirih merah) extract. IOP Conference Series: Materials Science and Engineering. 864, 12211 (2020). [Google Scholar]
- M. Alfarabi, M. Bintang, M. Safithri, The comparative ability of antioxidant activity of Piper crocatum in inhibiting fatty acid oxidation and free radical scavenging. Hayati J. Biosci. 17, 201–4 (2010). [CrossRef] [Google Scholar]
- N. Xia, C. Schirra, S. Hasselwander, U. Förstermann, H. Li, Red fruit (Pandanus conoideus Lam) oil stimulates nitric oxide production and reduces oxidative stress in endothelial cells. J. Funct. Foods. 51, 65–74 (2018). [CrossRef] [Google Scholar]
- R.R.D. Atmaja, V.K. Annadiyah, M. Thoyyibah, S. Maimunah, B. Ma’arif, R. Mutiah, I.M. Budi, M. Amiruddin, F.R. Inayatilah, The effect of red fruit oil (Pandanus conoideus Lamk.) emulgel on angiogenesis and collagen density in incisive wound healing in mice (Mus musculus). J. Adv. Pharm. Technol. Res. 14, 311–6 (2023). [CrossRef] [PubMed] [Google Scholar]
- H. Shokrani, H. Norouzian, O. Dezfoulian, Exo-erythrocytic stages of Haemoproteus sp. in common buzzard (Buteo buteo): A histopathological and molecular study. Int. J. Parasitol. Parasites Wildl. 16, 64–9 (2021). [CrossRef] [Google Scholar]
- Z. Zhang, J. Fan, J. Du, X. Peng, Two-channel responsive luminescent chemosensors for dioxygen species: Molecular oxygen, singlet oxygen and superoxide anion. Coord. Chem. Rev. 427, 213575 (2021). [CrossRef] [Google Scholar]
- X. Ruan, Y. Sun, W. Du, Y. Tang, Q. Liu, Z. Zhang, W. Doherty, R.L. Frost, G. Qian, D.C.W. Tsang, Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review. Bioresour. Technol. 281, 457–68 (2019). [CrossRef] [Google Scholar]
- T.J. Costa, P.R. Barros, C. Arce, J.D. Santos, J. da Silva-Neto, G. Egea, A.P. Dantas, R.C. Tostes, F. Jimenez-Altayo, The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic. Biol. Med. 162, 615–35 (2021). [CrossRef] [Google Scholar]
- J.E.B.F. Lima, N.C.S. Moreira, E.T. Sakamoto-Hojo, Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutat. Res. Toxicol. Environ. Mutagen. 874, 503437 (2022). [CrossRef] [Google Scholar]
- H. Wang, Y. Zhang, P. Tan, L. Jia, Y. Chen, B. Zhou, Mitochondrial respiratory chain dysfunction mediated by ROS is a primary point of fluoride-induced damage in Hepa16 cells. Environ. Pollut. 255, 113359 (2019). [CrossRef] [Google Scholar]
- N. Başaran, D. Paslı, A.A. Başaran, Unpredictable adverse effects of herbal products Food Chem. Toxicol. 159, 112762 (2022). [Google Scholar]
- L. Wolski, A. Walkowiak, M. Ziolek, Photo-assisted activation of H2O2 over Nb2O5– The role of active oxygen species on niobia surface in photocatalytic discoloration of Rhodamine B. Mater. Res. Bull. 118, 110530 (2019). [CrossRef] [Google Scholar]
- C. Chen, J. Min, L. Zhang, Y. Yang, X. Yu, R. Guo, Advanced understanding of the electron transfer pathway of cytochrome P450s. ChemBioChem. 22, 1317–28 (2021). [CrossRef] [PubMed] [Google Scholar]
- A.T. Jalil, M.A. Abdulhadi, L.R. Al-Ameer, O.F. Washeel, S.J. Abdulameer, M.S. Merza, M. Abosaooda, A.A. Mahdi, Free radical based nano cancer therapy. J. Drug Deliv. Sci. Technol. 87, 104803 (2023). [CrossRef] [Google Scholar]
- S. Liu, G. Liu, L. Yang, D. Li, M. Zheng, Critical influences of metal compounds on the formation and stabilization of environmentally persistent free radicals. Chem. Eng. J. 427, 131666 (2022). [CrossRef] [Google Scholar]
- L. Zhu, M. Luo, Y. Zhang, F. Fang, M. Li, F. An, D. Zhao, J. Zhang, Free radical as a double-edged sword in disease: Deriving strategic opportunities for nanotherapeutics. Coord. Chem. Rev. 475, 214875 (2023). [CrossRef] [Google Scholar]
- S. Fei, Y. Xia Y, Z. Chen, C. Liu, H. Liu, D. Han, J. Jin, Y. Yang, X. Zhu, S. Xie, A high-fat diet alters lipid accumulation and oxidative stress and reduces the disease resistance of overwintering hybrid yellow catfish (Pelteobagrus fulvidraco♀× P. vachelli♂). Aquac. Reports. 23, 101043 (2022). [CrossRef] [Google Scholar]
- J-X Ren, C. Li, X-L Yan, Y Qu, Y Yang, Z-N Guo, Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: possible targets and molecular mechanisms Oxid. Med. Cell. Longev. 2021, 6643382 (2021). [CrossRef] [PubMed] [Google Scholar]
- S. Chen, Q. Li, H. Shi, F. Li, Y. Duan, Q. Guo, New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed. Pharmacother. 178, 117084 (2024). [CrossRef] [Google Scholar]
- E. Sinaga, U. Hasanah, F.R.P. Sipahutar, Chemopreventive potential of Saurauia vulcani Korth in improving Rhodamine B induced hepato-renal carcinoma in rats. Pharmacol. Res. Chinese Med. 9, 100336 (2023). [CrossRef] [Google Scholar]
- T. Zeng, G-L Lei, M-L Yu, T-Y Zhang, Z-B Wang, S-Z Wang, The role and mechanism of various trace elements in atherosclerosis. Int. Immunopharmacol. 142, 113188 (2024). [CrossRef] [Google Scholar]
- K-K Chen, M. Minakuchi, K. Wuputra, C-C Ku, J-B Pan, K-K Kuo, Y-C Lin, S. Saito, C-S Lin, K.K. Yokoyama, Redox control in the pathophysiology of influenza virus infection. BMC Microbiol. 20, 1–22 (2020). [CrossRef] [PubMed] [Google Scholar]
- Z. Jie, J. Liu, M. Shu, Y. Ying, H. Yang, Detection strategies for superoxide anion: A review. Talanta. 236, 122892 (2022). [CrossRef] [PubMed] [Google Scholar]
- K. Jomova, R. Raptova, S.Y. Alomar, S.H. Alwasel, E. Nepovimova, K. Kuca, M. Valko, Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 97, 2499–574 (2023). [CrossRef] [PubMed] [Google Scholar]
- V.I. Lushchak, O. Lushchak, Interplay between reactive oxygen and nitrogen species in living organisms. Chem. Biol. Interact. 349, 109680 (2021). [CrossRef] [Google Scholar]
- M.M. Kabanda, A theoretical study of the antioxidant properties of phenolic acid amides investigated through the radical-scavenging and metal chelation mechanisms. Eur. Food Res. Technol. 241, 553–72 (2015). [CrossRef] [Google Scholar]
- S.G. Tumilaar, A. Hardianto, H. Dohi, D. Kurnia, A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J. Chem. 2024, 5594386 (2024). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.