Open Access
Issue
BIO Web Conf.
Volume 154, 2025
15th International Conference on Global Resource Conservation (ICGRC 2024) in conjunction with the 1st International Conference on Jamu and Alternative Medicine (ICJAM 2024)
Article Number 02008
Number of page(s) 23
Section Biotechnology and Bioprospecting
DOI https://doi.org/10.1051/bioconf/202515402008
Published online 28 January 2025
  • Ng CH, Pathy NB, Taib NA, Teh YC, Mun KS, Amiruddin A, Evlina S, Rhodes A, Yip CH. Comparison of breast cancer in Indonesia and Malaysia--a clinico-pathological study between Dharmais Cancer Centre Jakarta and University Malaya Medical Centre, Kuala Lumpur. Asian Pac J Cancer Prev. 12(11), 2943–6 (2011). [PubMed] [Google Scholar]
  • Paramita S, Raharjo EN, Niasari M, Azizah F, Hanifah NA. Luminal B is the Most common intrinsic molecular subtypes of invasive ductal breast carcinoma patients in East Kalimantan, Indonesia. Asian Pac J Cancer Prev. 20(8), 2247–2252 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Le-Petross, H., J. Stafford, I. Bedrosian, P.B. Garvey, W.A. Woodward, and S.L. Moulder-Thompson: Chapter 27 Breast Cancer; In: Oncologic Imaging: A Multidisciplinary Approach; edited by M.P. Silverman, USA: Elsevier. 497–507 (2012). [Google Scholar]
  • Moyal L. Navadyan, and B. Bonavida, Chapter 18 New therapeutic modalities in breast cancer by targeting NK cell inhibitory and activating receptors; In: Successes and Challenges of NK Immunotherapy, edited by B. Bonavida and A. Jewett, USA: Elsevier. 387–402 (2021). [Google Scholar]
  • Yersal O, Barutca S., Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol. 5(3), 412–24 (2014). [CrossRef] [PubMed] [Google Scholar]
  • Smoot B, Wampler M. Topp K.S. Breast Cancer Treatments and Complications: Implications for Rehabilitation. Rehabil Oncol. 27, 16–26 (2019). [Google Scholar]
  • Jayanti GE, Subagjo S., Balur and improving quality of life. The journal of Tropical Life Science.6, 35–40 (2016). [CrossRef] [Google Scholar]
  • Australian Associated Press, Tobacco plant may light the way to beating cancer, Australian scientists say. https://www.theguardian.com/science/2014/apr/02/tobacco-plant-may-light-the-way-to-beating-cancer-australian-scientists-say. Accessed June 13, 2022 [Google Scholar]
  • Bashir AIJ, Kankipati CS, Jones S, Newman RM, Safrany ST, Perry CJ, Nicholl ID, A novel mechanism for the anticancer activity of aspirin and salicylates. Int J Oncol. 54, 1256–1270 (2019). [PubMed] [Google Scholar]
  • Nigra AD, de Almeida Bauer Guimarães D, Prucca CG, Freitas-Silva O, Teodoro AJ, Gil GA. Antitumor effects of freeze-dried robusta coffee (Coffea canephora) extracts on breast cancer cell lines. Oxid Med Cell Longev. 2021, 5572630 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Kitzberger CSG, Scholz MBS, Benassi MDT, Bioactive compounds content in roasted coffee from traditional and modern Coffea arabica cultivars grown under the same edapho-climatic conditions. Food Res Int. 2024, 61–64 (2024). [Google Scholar]
  • Affonso RC, Voytena AP, Fanan S, Pitz H, Coelho DS, Horstmann AL, Pereira A, Uarrota VG, Hillmann MC, Varela LA, Ribeiro-do-Valle RM, Maraschin M., Phytochemical composition, antioxidant activity, and the effect of the aqueous extract of coffee (Coffea arabica L.) bean residual press cake on the skin wound healing. Oxid Med Cell Longev. 2016, 1923754 (2016). [Google Scholar]
  • Król K, Gantner M, Tatarak A, Hallmann E., The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur Food Res Technol. 246, 33–39 (2020). [CrossRef] [Google Scholar]
  • Ferreira PMP, Farias DF, Olivera JTDA, Carvalho ADFU, Moringa oleifera: bioactive compounds and nutritional potential. Rev de Nutr. 21, 431–437 (2018). [Google Scholar]
  • Muhammad AA, Pauzi NA, Arulselvan P, Abas F, Fakurazi S., In vitro wound healing potential and identification of bioactive compounds from Moringa oleifera Lam. Biomed Res Int. 2013, 974580 (2013). [PubMed] [Google Scholar]
  • Vongsak B, Sithisarn P, Gritsanapan W., Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam. J Chromatogr Sci. 52, 641–5 (2014). [CrossRef] [PubMed] [Google Scholar]
  • Valdez-Solana MA, Mejía-García VY, Téllez-Valencia A, García-Arenas G, SalasPacheco J, Alba-Romero JJ, Sierra-Campos E., Nutritional content and elemental and phytochemical analyses of Moringa oleifera grown in Mexico. J Chem. 860381 (2015). [Google Scholar]
  • Vergara-Jimenez M, Almatrafi MM, Fernandez ML., Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants (Basel). 6, 91 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Rodgman A, Perfetti TA., The chemical components identified in tobacco and tobacco smoke prior to 1954: a chronology of classical chemistry. Beitr. Tab. Int./ Contrib. Tob. Res. 23, 277–333 (2014). [Google Scholar]
  • Milano M., Gene prioritization tools in Shoba Ranganathan; In: Encyclopedia of Bioinformatics and Computational Biology, edited by Gribskov M., Nakai K., and Schönbach C., USA: Academic Press. 907–914 (2019). [CrossRef] [Google Scholar]
  • Kanehisa M, Goto S, KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). [CrossRef] [PubMed] [Google Scholar]
  • Supe S, Takudage P., Methods for evaluating penetration of drug into the skin: A review. Skin Res Technol. 27, 299–308 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Maciel Tabosa MA, Hoppel M, Bunge AL, Guy RH, Delgado-Charro MB., Predicting topical drug clearance from the skin. Drug Deliv Transl Res. 11, 729–740 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Hanahan D, Weinberg RA, Hallmarks of cancer: the next generation. Cell. 144, 646–74 (2011). [CrossRef] [PubMed] [Google Scholar]
  • Kurmi K, Haigis MC., Nitrogen metabolism in cancer and immunity. Trends Cell Biol. 30, 408–424 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Fang Y, Yu H, Liang X, Xu J, Cai X., Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer. Cancer Biol Ther. 15, 1268–79 (2014). [CrossRef] [PubMed] [Google Scholar]
  • Cardano M, Tribioli C, Prosperi E., Targeting proliferating cell nuclear antigen (PCNA) as an effective strategy to inhibit tumor cell proliferation. Curr Cancer Drug Targets. 20, 240–252 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Cheng HS, Yip YS, Lim EKY, Wahli W, Tan NS., PPARs and tumor microenvironment: the emerging roles of the metabolic master regulators in tumor stromal-epithelial crosstalk and carcinogenesis. Cancers (Basel). 13, 2153 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Semenza GL., Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 29, 625–34 (2010). [CrossRef] [PubMed] [Google Scholar]
  • Huang Q, Hu X, He W, Zhao Y, Hao S, Wu Q, Li S, Zhang S, Shi M., Fluid shear stress and tumor metastasis. Am J Cancer Res. 8, 763–777 (2018). [PubMed] [Google Scholar]
  • Levitsky DO, Dembitsky VM., Anti-breast cancer agents derived from plants. Nat Prod Bioprospect. 5, 1–16 (2014). [Google Scholar]
  • Tiloke C, Anand K, Gengan RM, Chuturgoon AA., Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomed Pharmacother. 108, 457–466 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Saito Y, Takizawa H, Konishi S, Yoshida D, Mizusaki S., Identification of cembratriene4,6-diol as antitumor-promoting agent from cigarette smoke condensate. Carcinogenesis. 6, 1189–94 (1985). [CrossRef] [PubMed] [Google Scholar]
  • Pearce A, Haas M, Viney R, Pearson SA, Haywood P, Brown C, Ward R., Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLoS One. 12, e0184360 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Fantozzi A, Christofori G., Mouse models of breast cancer metastasis. Breast Cancer Res. 8, 212 (2006). [CrossRef] [PubMed] [Google Scholar]
  • Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, Dwarakanath BS., The role of notch, hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies. Front Cell Dev Biol. 9, 650772 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Guilloux G, Gibeaux R., Mechanisms of spindle assembly and size control. Biol Cell. 112, 369–382 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Bozina T, Simić I, Lovrić J, Pećin I, Jelaković B, Sertić J, Reiner Z., Effects of lipoprotein lipase and peroxisome proliferator-activated receptor-gamma gene variants on metabolic syndrome traits. Coll Antropol. 37, 801–8 (2013). [PubMed] [Google Scholar]
  • Zhou J, Zhang W, Liang B, Casimiro MC, Whitaker-Menezes D, Wang M, Lisanti MP, Lanza-Jacoby S, Pestell RG, Wang C., PPARgamma activation induces autophagy in breast cancer cells. Int J Biochem Cell Biol. 41, 2334–42 (2009). [CrossRef] [PubMed] [Google Scholar]
  • Takasu S, Mutoh M, Takahashi M, Nakagama H., Lipoprotein lipase as a candidate target for cancer prevention/therapy. Biochem Res Int. 2012, 398697 (2012). [CrossRef] [Google Scholar]
  • Kawase T, Matsuo K, Hiraki A, Suzuki T, Watanabe M, Iwata H, Tanaka H, Tajima K., Interaction of the effects of alcohol drinking and polymorphisms in alcohol-metabolizing enzymes on the risk of female breast cancer in Japan. J Epidemiol. 19, 244–50 (2009). [CrossRef] [PubMed] [Google Scholar]
  • Park B, Kim JH, Lee ES, Jung SY, Lee SY, Kang HS, Lee EG, Han JH., Role of aldehyde dehydrogenases, alcohol dehydrogenase 1B genotype, alcohol consumption, and their combination in breast cancer in East-Asian women. Sci Rep. 10, 6564 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Karimian A, Ahmadi Y, Yousefi B., Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 42, 63–71 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Xing Z, Wang X, Liu J, Zhang M, Feng K, Wang X., Expression and prognostic value of CDK1, CCNA2, and CCNB1 gene clusters in human breast cancer. J Int Med Res. 49, 300060520980647 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Izadi S, Nikkhoo A, Hojjat-Farsangi M, Namdar A, Azizi G, Mohammadi H, Yousefi M, Jadidi-Niaragh F., CDK1 in breast cancer: Implications for theranostic potential. Anticancer Agents Med Chem. 20, 758–767 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Kim SJ, Nakayama S, Miyoshi Y, Taguchi T, Tamaki Y, Matsushima T, Torikoshi Y, Tanaka S, Yoshida T, Ishihara H, Noguchi S., Determination of the specific activity of CDK1 and CDK2 as a novel prognostic indicator for early breast cancer. Ann Oncol. 19, 68–72 (2008). [CrossRef] [PubMed] [Google Scholar]
  • Niméus-Malmström E, Koliadi A, Ahlin C, Holmqvist M, Holmberg L, Amini RM, Jirström K, Wärnberg F, Blomqvist C, Fernö M, Fjällskog ML., Cyclin B1 is a prognostic proliferation marker with a high reproducibility in a population-based lymph node negative breast cancer cohort. Int J Cancer. 127, 961–7 (2010). [CrossRef] [PubMed] [Google Scholar]
  • Patil M, Pabla N, Dong Z., Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci. 70, 4009–21 (2013). [CrossRef] [PubMed] [Google Scholar]
  • Bryant C, Rawlinson R, Massey AJ., Chk1 inhibition as a novel therapeutic strategy for treating triple-negative breast and ovarian cancers. BMC Cancer. 14, 570 (2014). [CrossRef] [PubMed] [Google Scholar]
  • Aaltonen K, Amini RM, Heikkilä P, Aittomäki K, Tamminen A, Nevanlinna H, Blomqvist C., High cyclin B1 expression is associated with poor survival in breast cancer. Br J Cancer. 100, 1055–60 (2009). [CrossRef] [PubMed] [Google Scholar]
  • Al-Kaabi MM, Alshareeda AT, Jerjees DA, Muftah AA, Green AR, Alsubhi NH, Nolan CC, Chan S, Cornford E, Madhusudan S, Ellis IO, Rakha EA., Checkpoint kinase1 (CHK1) is an important biomarker in breast cancer having a role in chemotherapy response. Br J Cancer. 112, 901–11 (2015). [CrossRef] [PubMed] [Google Scholar]
  • Suzuki T, Urano T, Miki Y, Moriya T, Akahira J, Ishida T, Horie K, Inoue S, Sasano H., Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci. 98, 644–51 (2007). [CrossRef] [PubMed] [Google Scholar]
  • Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F., Role of gemcitabine in cancer therapy. Future Oncol. 1, 7–17 (2005). [CrossRef] [PubMed] [Google Scholar]
  • Xie Z, Zhang Y, Jin C, Fu D., Gemcitabine-based chemotherapy as a viable option for treatment of advanced breast cancer patients: a meta-analysis and literature review. Oncotarget. 9, 7148–7161 (2017). [Google Scholar]
  • Casagrande F, Darbon JM., Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol. 61, 1205–15 (2001). [CrossRef] [PubMed] [Google Scholar]
  • Iizumi Y, Oishi M, Taniguchi T, Goi W, Sowa Y, Sakai T., The flavonoid apigenin downregulates CDK1 by directly targeting ribosomal protein S9. PLoS One. 8, e73219 (2013). [CrossRef] [PubMed] [Google Scholar]
  • Huang WW, Tsai SC, Peng SF, Lin MW, Chiang JH, Chiu YJ, Fushiya S, Tseng MT, Yang JS., Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int J Oncol. 42, 2069–77 (2013). [CrossRef] [PubMed] [Google Scholar]
  • Sun HW, Chen J, Wu WC, Yang YY, Xu YT, Yu XJ, Chen HT, Wang Z, Wu XJ, Zheng L., Retinoic acid synthesis deficiency fosters the generation of polymorphonuclear myeloid-derived suppressor cells in colorectal cancer. Cancer Immunol Res. 9, 20–33 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Zheng RR, Hu W, Sui CG, Ma N, Jiang YH., Effects of doxorubicin and gemcitabine on the induction of apoptosis in breast cancer cells. Oncol Rep. 32, 2719–25 (2014). [CrossRef] [PubMed] [Google Scholar]
  • Shafei A, El-Bakly W, Sobhy A, Wagdy O, Reda A, Aboelenin O, Marzouk A, El Habak K, Mostafa R, Ali MA, Ellithy M., A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed Pharmacother. 95, 1209–1218 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Yemm KE, Alwan LM, Malik AB, Salazar LG., Renal toxicity with liposomal doxorubicin in metastatic breast cancer. J Oncol Pharm Pract. 25, 1738–1742 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Gadisa DA, Assefa M, Wang SH, Yimer G., Toxicity profile of DoxorubicinCyclophosphamide and Doxorubicin-Cyclophosphamide followed by Paclitaxel regimen and its associated factors among women with breast cancer in Ethiopia: A prospective cohort study. J Oncol Pharm Pract. 26, 1912–1920 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Choi EJ, Kim GH., Apigenin causes G(2)/M arrest associated with the modulation of p21(Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. J Nutr Biochem. 20, 285–90 (2009). [CrossRef] [PubMed] [Google Scholar]
  • Smolarek AK, Suh N., Chemopreventive activity of vitamin E in breast cancer: a focus on γand δ-tocopherol. Nutrients. 3, 962–86 (2011). [CrossRef] [PubMed] [Google Scholar]
  • Carmona, F., and A.M.S. Pereira: Herbal medicines: old and new concepts, truths and misunderstandings. Rev Bras Farmacogn. 23, 379–385 (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.