Open Access
Issue
BIO Web Conf.
Volume 154, 2025
15th International Conference on Global Resource Conservation (ICGRC 2024) in conjunction with the 1st International Conference on Jamu and Alternative Medicine (ICJAM 2024)
Article Number 03004
Number of page(s) 17
Section Jamu and Alternative Medicine
DOI https://doi.org/10.1051/bioconf/202515403004
Published online 28 January 2025
  • K. Vijayaraghavan, J. Rajkumar, and M. A. Seyed, Phytochemical screening, free radical scavenging and antimicrobial potential of Chromolaena odorata leaf extracts against pathogenic bacterium in wound infections– a multispectrum perspective, Biocatalysis and Agricultural Biotechnology 15, 103 (2018) [CrossRef] [Google Scholar]
  • S. D. Putri, Rusdi, and R. Asra, A Review: Antioxidant Activities of Sembung Leaves (Blumea Balsamifera (L.) DC), EASJPP 2, 166 (2020) [CrossRef] [Google Scholar]
  • M. Masyudi, M. Hanafiah, R. Rinidar, S. Usman, and M. Marlina, Phytochemical screening and GC-MS analysis of bioactive compounds of Blumea balsamifera leaf extracts from South Aceh, Indonesia, Biodiversitas Journal of Biological Diversity 23, (2022) [CrossRef] [Google Scholar]
  • K. S. Mohd and N. A. M. Razali, Blumea balsamifera Linn DC: A review on traditional uses, phytochemical composition and pharmacological properties, Bioscience Research 17, (2020) [Google Scholar]
  • Y. Pang, D. Wang, Z. Fan, X. Chen, F. Yu, X. Hu, K. Wang, and L. Yuan, Blumea balsamifera—A Phytochemical and Pharmacological Review, Molecules 19, 9453 (2014) [CrossRef] [PubMed] [Google Scholar]
  • H. Hasegawa, Y. Yamada, K. Komiyama, M. Hayashi, M. Ishibashi, T. Yoshida, T. Sakai, T. Koyano, T. Kam, K. Murata, K. Sugahara, K. Tsuruda, N. Akamatsu, K. Tsukasaki, M. Masuda, N. Takasu, and S. Kamihira, Dihydroflavonol BB-1, an extract of natural plant Blumea balsamifera, abrogates TRAIL resistance in leukemia cells, Blood 107, 679 (2006) [CrossRef] [PubMed] [Google Scholar]
  • N. Saewan, S. Koysomboon, and K. Chantrapromma, Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC, J. Med. Plant. Res. 5, 1018 (2011) [Google Scholar]
  • M. Adil, F. Z. Filimban, Ambrin, A. Quddoos, A. A. Sher, and M. Naseer, Phytochemical screening, HPLC analysis, antimicrobial and antioxidant effect of Euphorbia parviflora L. (Euphorbiaceae Juss.), Sci Rep 14, (2024) [Google Scholar]
  • J. R. C. Bacong and D. E. O. Juanico, Predictive Chromatography of Leaf Extracts Through Encoded Environmental Forcing on Phytochemical Synthesis, Front. Plant Sci. 12, (2021) [Google Scholar]
  • M.-H. Ma, J.-N. Zhang, X.-L. Ma, X.-C. Wang, F.-L. Ma, J.-N. Liu, Y. Lv, Y.-J. Yu, and Y. She, Food Res Int 170, 113015 (2023) [CrossRef] [PubMed] [Google Scholar]
  • P. C. Agu, C. A. Afiukwa, O. U. Orji, E. M. Ezeh, I. H. Ofoke, C. O. Ogbu, E. I. Ugwuja, and P. M. Aja, Using UHPLC-HRMS-based comprehensive strategy to efficiently and accurately screen and identify illegal additives in health-care foods, Sci Rep 13, 13398 (2023) [CrossRef] [PubMed] [Google Scholar]
  • M. H. Widyananda, S. T. Wicaksono, K. Rahmawati, S. Puspitarini, S. M. Ulfa, Y. D. Jatmiko, M. Masruri, and N. Widodo, A Potential Anticancer Mechanism of Finger Root (Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line, Scientifica (Cairo) 2022, 9130252 (2022) [PubMed] [Google Scholar]
  • L. Jing, H. Ma, P. Fan, R. Gao, and Z. Jia, Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxia-induced injury in PC12 cells, BMC Complementary and Alternative Medicine 15, 287 (2015) [CrossRef] [PubMed] [Google Scholar]
  • D. Pratami, A. Mun’im, A. Sundowo, and M. Sahlan, Phytochemical Profile and Antioxidant Activity of Propolis Ethanolic Extract from Tetragonula Bee, Pharmacognosy Journal 10, 128 (2018) [Google Scholar]
  • E. Sembiring, B. Elya, R. Sauriasari, and R. Sauriasari, Phytochemical Screening, Total Flavonoid and Total Phenolic Content and Antioxidant Activity of Different Parts of Caesalpinia bonduc (L.) Roxb, Pharmacognosy Journal 10, 123 (2018) [Google Scholar]
  • S. Aryal, M. K. Baniya, K. Danekhu, P. Kunwar, R. Gurung, and N. Koirala, Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal, Plants 8, 96 (2019) [CrossRef] [PubMed] [Google Scholar]
  • R. Heryanto, Phytochemical profiling by LC-HRMS and antioxidant activity of Blumea balsamifera leaves extract based on differences in the growing location and extracting solvent. Farmacia 72, 613 (2024) [CrossRef] [Google Scholar]
  • S. Jirakitticharoen, W. Wisuitiprot, P. Jitareerat, and C. Wongs-Aree, Phenolics, Antioxidant and Antibacterial Activities of Immature and Mature Blumea balsamifera Leaf Extracts Eluted with Different Solvents, J Trop Med 2022, 7794227 (2022) [CrossRef] [Google Scholar]
  • J. Dai and R. J. Mumper, Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties, Molecules 15, 7313 (2010) [CrossRef] [PubMed] [Google Scholar]
  • J. Yeo and F. Shahidi, Revisiting DPPH (2,2-diphenyl-1-picrylhydrazyl) assay as a useful tool in antioxidant evaluation: A new IC100 concept to address its limitations, Journal of Food Bioactives 7, (2019) [Google Scholar]
  • G. Jang, S. Lee, J. Hong, B. Park, D. Kim, and C. Kim, Anti-Inflammatory Effect of 4,5-Dicaffeoylquinic Acid on RAW264.7 Cells and a Rat Model of Inflammation, Nutrients 13, 3537 (2021) [CrossRef] [PubMed] [Google Scholar]
  • J. Y. Kang, S. K. Park, J. M. Kim, S. B. Park, S. K. Yoo, H. J. Han, D. O. Kim, and H. J. Heo, 4,5-dicaffeyolquinic acid improves high-fat diet-induced cognitive dysfunction through the regulation of insulin degrading enzyme, Journal of Food Biochemistry 43, e12855 (2019) [PubMed] [Google Scholar]
  • O. Lodise, K. Patil, I. Karshenboym, S. Prombo, C. Chukwueke, and S. B. Pai, Inhibition of Prostate Cancer Cells by 4,5-Dicaffeoylquinic Acid through Cell Cycle Arrest, Prostate Cancer 2019, 4520645 (2019) [CrossRef] [Google Scholar]
  • W. Liu, J. Deng, X.-J. Tao, Y. Peng, X.-D. Chen, X.-C. Qu, H.-W. Deng, and L.-J. Tan, Aurantio-obtusin regulates lipogenesis and ferroptosis of liver cancer cells through inhibiting SCD1 and sensitizing RSL3, International Journal of Oncology 65, 1 (2024) [Google Scholar]
  • L. A. Roser, P. Erkoc, R. Ingelfinger, M. Henke, T. Ulshöfer, A.-K. Schneider, V. Laux, G. Geisslinger, I. Schmitt, R. Fürst, and S. Schiffmann, Lecanoric acid mediates antiproliferative effects by an M phase arrest in colon cancer cells, Biomedicine & Pharmacotherapy 148, 112734 (2022) [CrossRef] [Google Scholar]
  • E. Cabañas-García, C. Areche, J. Jáuregui-Rincón, F. Cruz-Sosa, and E. Pérez-Molphe Balch, Phytochemical Profiling of Coryphantha macromeris (Cactaceae) Growing in Greenhouse Conditions Using Ultra-High-Performance Liquid Chromatography– Tandem Mass Spectrometry, Molecules 24, 705 (2019) [CrossRef] [PubMed] [Google Scholar]
  • G. Gong, Y.-Y. Guan, Z.-L. Zhang, K. Rahman, S.-J. Wang, S. Zhou, X. Luan, and H. Zhang, Isorhamnetin: A review of pharmacological effects, Biomedicine & Pharmacotherapy 128, 110301 (2020) [CrossRef] [Google Scholar]
  • S. Wakuta, S. Hamada, H. Ito, H. Matsuura, K. Nabeta, and H. Matsui, Identification of a β-glucosidase hydrolyzing tuberonic acid glucoside in rice (Oryza sativa L.), Phytochemistry 71, 1280 (2010) [CrossRef] [PubMed] [Google Scholar]
  • P. Biswas, D. Dey, P. K. Biswas, T. I. Rahaman, S. Saha, A. Parvez, D. A. Khan, N. J. Lily, K. Saha, M. Sohel, M. M. Hasan, S. Al Azad, S. Bibi, M. N. Hasan, M. Rahmatullah, J. Chun, M. A. Rahman, and B. Kim, A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells, International Journal of Molecular Sciences 23, 11746 (2022) [CrossRef] [PubMed] [Google Scholar]
  • T. Yang, Y. Liu, X. Huang, R. Zhang, C. Yang, J. Zhou, Y. Zhang, J. Wan, and S. Shi, Quercetin-3-O-β-D-glucoside decreases the bioavailability of cyclosporin A through regulation of drug metabolizing enzymes, transporters and nuclear receptors in rats, Mol Med Rep 18, 2599 (2018) [PubMed] [Google Scholar]
  • P. Ausina, J. R. Branco, T. M. Demaria, A. M. Esteves, J. G. B. Leandro, A. C. Ochioni, A. P. M. Mendonça, F. L. Palhano, M. F. Oliveira, W. Abou-Kheir, M. Sola-Penna, and P. Zancan, Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis, Sci Rep 10, 19617 (2020) [CrossRef] [PubMed] [Google Scholar]
  • A. Gupta, A. G. Atanasov, Y. Li, N. Kumar, and A. Bishayee, Chlorogenic acid for cancer prevention and therapy: Current status on efficacy and mechanisms of action, Pharmacological Research 186, 106505 (2022) [CrossRef] [PubMed] [Google Scholar]
  • J. Stabrauskiene, D. M. Kopustinskiene, R. Lazauskas, and J. Bernatoniene, Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities, Biomedicines 10, 1686 (2022) [CrossRef] [PubMed] [Google Scholar]
  • L. E. Bultum, G. B. Tolossa, G. Kim, O. Kwon, and D. Lee, In silico activity and ADMET profiling of phytochemicals from Ethiopian indigenous aloes using pharmacophore models, Sci Rep 12, 22221 (2022) [CrossRef] [PubMed] [Google Scholar]
  • A. Daina, O. Michielin, and V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci Rep 7, 42717 (2017) [CrossRef] [PubMed] [Google Scholar]
  • A. Belloni, A. Pugnaloni, M. R. Rippo, S. Di Valerio, C. Giordani, A. D. Procopio, and G. Bronte, The cell line models to study tyrosine kinase inhibitors in non-small cell lung cancer with mutations in the epidermal growth factor receptor: A scoping review, Critical Reviews in Oncology/Hematology 194, 104246 (2024) [CrossRef] [PubMed] [Google Scholar]
  • Y. Liu, H. Ma, and J. Yao, ERα, A Key Target for Cancer Therapy: A Review, OTT 13, 2183 (2020) [CrossRef] [Google Scholar]
  • U. K. Soni, L. Jenny, and R. S. Hegde, IGF-1R targeting in cancer – does sub-cellular localization matter?, Journal of Experimental & Clinical Cancer Research 42, 273 (2023) [CrossRef] [PubMed] [Google Scholar]
  • M. H. Widyananda, L. Muflikhah, S. M. Ulfa, and N. Widodo, Unveiling the antibreast cancer mechanism of Euphorbia hirta ethanol extract: computational and experimental study, Journal of Biologically Active Products from Nature 14, 359 (2024) [CrossRef] [Google Scholar]
  • F. Chen, X. Long, Z. Liu, H. Shao, and L. Liu, Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosus L.) Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry, The Scientific World Journal 2014, 568043 (2014) [Google Scholar]
  • S. Qin, Y. Xu, K. Li, K. Gong, J. Peng, S. Shi, F. Yan, and W. Cai, Identification of metabolites of aurantio-obtusin in rats using ultra-high-performance Liquid Chromatography-Q-Exactive Orbitrap Mass Spectrometry with parallel reaction monitoring, Journal of Analytical Methods in Chemistry 2021, 6630604 (2021) [PubMed] [Google Scholar]
  • N. Zhang, N. Dong, L. Pang, H. Xu, and H. Ji, Quantitative Determination and Pharmacokinetic Study of Aurantio-Obtusin in Rat Plasma by Liquid ChromatographyMass Spectrometry, Journal of Chromatographic Science 52, 1059 (2014) [CrossRef] [PubMed] [Google Scholar]
  • F. Lünne, E.-M. Niehaus, S. Lipinski, J. Kunigkeit, S. A. Kalinina, and H.-U. Humpf, Identification of the polyketide synthase PKS7 responsible for the production of lecanoric acid and ethyl lecanorate in Claviceps purpurea, Fungal Genetics and Biology 145, 103481 (2020) [CrossRef] [PubMed] [Google Scholar]
  • B. Sepúlveda, A. Cornejo, D. Bárcenas-Pérez, J. Cheel, and C. Areche, Two New Fumarprotocetraric Acid Lactones Identified and Characterized by UHPLCPDA/ESI/ORBITRAP/MS/MS from the Antarctic Lichen Cladonia metacorallifera, Separations 9, 41 (2022) [CrossRef] [Google Scholar]
  • S. G. Musharraf, N. Kanwal, V. M. Thadhani, and M. I. Choudhary, Rapid Identification of bioactive secondary metabolites in lichen extracts based on Structural Fragmentation Pattern using ESI-MS/MS Analysis, in (The Royal Society of Chemistry, 2015) [Google Scholar]
  • P. Wang, J. Chi, H. Guo, S.-X. Wang, J. Wang, E.-P. Xu, L.-P. Dai, and Z.-M. Wang, Identification of Differential Compositions of Aqueous Extracts of Cinnamomi Ramulus and Cinnamomi Cortex, Molecules 28, 2015 (2023) [CrossRef] [PubMed] [Google Scholar]
  • L. Dai, S. Cai, D. Chu, R. Pang, J. Deng, X. Zheng, and W. Dai, Identification of Chemical Constituents in Blumea balsamifera Using UPLC–Q–Orbitrap HRMS and Evaluation of Their Antioxidant Activities, Molecules 28, 4504 (2023) [CrossRef] [PubMed] [Google Scholar]
  • Y. Zhang, H. Xiong, X. Xu, X. Xue, M. Liu, S. Xu, H. Liu, Y. Gao, H. Zhang, and X. Li, Compounds Identification in Semen Cuscutae by Ultra-High-Performance Liquid Chromatography (UPLCs) Coupled to Electrospray Ionization Mass Spectrometry, Molecules 23, 1199 (2018) [CrossRef] [PubMed] [Google Scholar]
  • F. Alshammari, M. Badrul Alam, M. Naznin, S. Kim, and S.-H. Lee, Optimization of Portulaca oleracea L. extract using response surface methodology and artificial neural network and characterization of bioactive compound by high-resolution mass spectroscopy, Arabian Journal of Chemistry 16, 104425 (2023) [CrossRef] [Google Scholar]
  • P. J. Gates and N. P. Lopes, Characterisation of Flavonoid Aglycones by Negative Ion Chip-Based Nanospray Tandem Mass Spectrometry, Int J Anal Chem 2012, 259217 (2012) [CrossRef] [Google Scholar]
  • K. S. Gajiwala, J. Feng, R. Ferre, K. Ryan, O. Brodsky, S. Weinrich, J. C. Kath, and A. Stewart, Insights into the Aberrant Activity of Mutant EGFR Kinase Domain and Drug Recognition, Structure 21, 209 (2013) [CrossRef] [PubMed] [Google Scholar]
  • A. K. Shiau, D. Barstad, P. M. Loria, L. Cheng, P. J. Kushner, D. A. Agard, and G. L. Greene, The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen, Cell 95, 927 (1998) [CrossRef] [PubMed] [Google Scholar]
  • U. Velaparthi, M. Wittman, P. Liu, K. Stoffan, K. Zimmermann, X. Sang, J. Carboni, A. Li, R. Attar, M. Gottardis, A. Greer, C. Y. Chang, B. L. Jacobsen, J. S. Sack, Y. Sun, D. R. Langley, B. Balasubramanian, and D. Vyas, Discovery and initial SAR of 3-(1Hbenzo[d]imidazol-2-yl)pyridin-2(1H)-ones as inhibitors of insulin-like growth factor 1receptor (IGF-1R), Bioorganic & Medicinal Chemistry Letters 17, 2317 (2007) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.