Open Access
Issue
BIO Web Conf.
Volume 154, 2025
15th International Conference on Global Resource Conservation (ICGRC 2024) in conjunction with the 1st International Conference on Jamu and Alternative Medicine (ICJAM 2024)
Article Number 03008
Number of page(s) 12
Section Jamu and Alternative Medicine
DOI https://doi.org/10.1051/bioconf/202515403008
Published online 28 January 2025
  • W.J. Metsemakers, H.C. van der Mei, R.G. Richards, T.F. Moriarty, Editorial – infectious-disease research during a pandemic: The importance of global unity. Eur. Cells Mater. 42, 154–155 (2021). doi: 10.22203/eCM.v042a11. [CrossRef] [Google Scholar]
  • S. Chen, W. Ye, W. Zheng, Z. Xu, Y. Chen, L. Jin, Increased serum antimicrobial peptide LL-37 and HBD-2 combined with 25-hydroxyvitamin D3 deficiency in infants with pertussis. J. Infect. Dev. Ctries. 14, 1164–1169 (2020). doi: 10.3855/jidc.12317. [CrossRef] [Google Scholar]
  • T. Karrasch, A. Höpfinger, A. Schäffler, A. Schmid, The adipokine C1q/TNF-related protein-3 (CTRP-3) inhibits Toll-like receptor (TLR)-induced expression of Cathelicidin antimicrobial peptide (CAMP) in adipocytes. Cytokine. 148, 155663 (2021). doi: 10.1016/j.cyto.2021.155663. [CrossRef] [PubMed] [Google Scholar]
  • M.R.E. Wuryandari, M.F. Atho’illah, R.D. Laili et al., Lactobacillus plantarum FNCC 0137 fermented red Moringa oleifera exhibits protective effects in mice challenged with Salmonella typhi via TLR3/TLR4 inhibition and down-regulation of proinflammatory cytokines. J. Ayurveda Integr. Med. 13, 100531 (2022). doi: 10.1016/j.jaim.2021.10.003. [CrossRef] [Google Scholar]
  • J.F. Burgueño, A. Barba, E. Eyre, C. Romero, M. Neunlist, E. Fernández, TLR2 and TLR9 modulate enteric nervous system inflammatory responses to lipopolysaccharide. J. Neuroinflammation. 13, 187 (2016). doi: 10.1186/s12974-016-0653-0. [CrossRef] [Google Scholar]
  • E. Purwanti, F.E. Hermanto, J.W. Souhaly, W. Prihanta, T.I. Permana, Exploring public health benefits of Dolichos lablab as a dietary supplement during the COVID-19 outbreak: A computational study. J. Appl. Pharm. Sci. 11, 135–140 (2021). doi: 10.7324/JAPS.2021.110217. [Google Scholar]
  • R.M. van Harten, E. van Woudenbergh, A. van Dijk, H.P. Haagsman, Cathelicidins: Immunomodulatory antimicrobials. Vaccines. 6, (2018). doi: 10.3390/vaccines6030063. [CrossRef] [PubMed] [Google Scholar]
  • D. Xhindoli, S. Pacor, M. Benincasa, M. Scocchi, R. Gennaro, A. Tossi, The human cathelicidin LL-37 A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta Biomembr. 1858, 546–566 (2016). doi: 10.1016/j.bbamem.2015.11.003. [CrossRef] [Google Scholar]
  • A. Schink, J. Neumann, A.L. Leifke et al., Screening of herbal extracts for TLR2-and TLR4-dependent anti-inflammatory effects. PLoS One. 13, 1–27 (2018). doi: 10.1371/journal.pone.0203907. [Google Scholar]
  • F. Mohammadi, K. Rahimi, A. Ahmadi, Z. Hooshmandi, S. Amini, A. Mohammadi, Anti-inflammatory effects of Mentha pulegium L. extract on human peripheral blood mononuclear cells are mediated by TLR-4 and NF-κB suppression. Heliyon. 10, e24040 (2024). doi: 10.1016/j.heliyon.2024.e24040. [CrossRef] [PubMed] [Google Scholar]
  • M. Ghasempour, M. Hosseini, M.S. Soltani-Zangbar et al., The impact of Hyssop (Hyssopus officinalis) extract on activation of endosomal toll like receptors and their downstream signaling pathways. BMC Res. Notes. 15, 1–7 (2022). doi: 10.1186/s13104-022-06253-3. [CrossRef] [Google Scholar]
  • D. Pandiangan, M. Silalahi, F. Dapas, F. Kandou, Diversity of medicinal plants and their uses by the Sanger tribe of Sangihe Islands, North Sulawesi, Indonesia. Biodiversitas. 20, 621–631 (2019). doi: 10.13057/biodiv/d200301. [Google Scholar]
  • A. Parveen, S. Zahiruddin, N. Agarwal, M.A. Siddiqui, S.H. Ansari, S. Ahmad, Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide-induced immunosuppressed mice. Saudi J. Biol. Sci. 28, 6178–6190 (2021). doi: 10.1016/j.sjbs.2021.06.076. [CrossRef] [Google Scholar]
  • W.J. Lee, H.W. Cha, M.Y. Sohn, S.J. Lee, D.W. Kim, Vitamin D increases expression of cathelicidin in cultured sebocytes. Arch. Dermatol. Res. 304, 627–632 (2012). doi: 10.1007/s00403-012-1255-z. [CrossRef] [PubMed] [Google Scholar]
  • M.B. Lowry, C. Guo, Y. Zhang et al., A mouse model for vitamin D-induced human cathelicidin antimicrobial peptide gene expression. J. Steroid Biochem. Mol. Biol. 198, 105552 (2020). doi: 10.1016/j.jsbmb.2019.105552. [CrossRef] [Google Scholar]
  • M. S. Gönen, M. Alaylıoğlu, E. Durcan et al., Rapid and effective vitamin D supplementation may present better clinical outcomes in COVID-19 (SARS-CoV-2) patients by altering serum INOS1, IL1B, IFNg, Cathelicidin-LL37, and ICAM1. Nutrients. 13, 1–19 (2021). doi: 10.3390/nu13114047. [Google Scholar]
  • F.N. Hamza, S. Daher, H.M.A. Fakhoury, W.B. Grant, P.R. Kvietys, K. Al-Kattan, Immunomodulatory properties of vitamin D in the intestinal and respiratory systems. Nutrients. 15 (2023). doi: 10.3390/nu15071696. [CrossRef] [PubMed] [Google Scholar]
  • J. Jacob, B.M. Babu, M.C. Mohan, A.P. Abhimannue, B.P. Kumar, Inhibition of proinflammatory pathways by bioactive fraction of Tinospora cordifolia. Inflammopharmacology. 26, 531–538 (2018). doi: 10.1007/s10787-017-0319-2. [CrossRef] [PubMed] [Google Scholar]
  • P. Tiwari, S. A. Ali, B. Puri, A. Kumar, A.K. Datusalia, Tinospora cordifolia Miers enhances the immune response in mice immunized with JEV-vaccine: A network pharmacology and experimental approach. Phytomedicine. 119, 1–11 (2023). doi: 10.1016/j.phymed.2023.154976. [CrossRef] [PubMed] [Google Scholar]
  • W. Ahmad, I. Jantan, E. Kumolosasi, S.N.A. Bukhari, Immunostimulatory effects of the standardized extract of Tinospora crispa on innate immune responses in Wistar Kyoto rats. Drug Des. Devel. Ther. 9, 2961–2973 (2015). doi: 10.2147/DDDT.S85405. [Google Scholar]
  • J. Martínez-Moreno, J.C. Hernandez, S. Urcuqui-Inchima, Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol. Cell. Biochem. 464, 169–180 (2020). doi: 10.1007/s11010-019-03658-w. [CrossRef] [PubMed] [Google Scholar]
  • M.F. Atho’illah, Y.D. Safitri, F. Nur’aini, S. Widyarti, H. Tsuboi, M. Rifa’i, Elicited soybean extract attenuates proinflammatory cytokines expression by modulating TLR3/TLR4 activation in high−fat, high−fructose diet mice. J. Ayurveda Integr. Med. 12, 43–51 (2021). doi: 10.1016/j.jaim.2021.01.003. [CrossRef] [Google Scholar]
  • S.R. Pakadang, S. Ratnah, A.M. Salasa, Jumain, M. Hatta, Toll Like Receptor 4 expression profile in mice infected Mycobacterium tuberculosis given with miana leaves extract (Coleus scutellarioides (L.) Benth) (tuberculosis preventive and curative mechanisms). Pharmacogn. J. 14, 497–505 (2022). doi: 10.5530/pj.2022.14.63. [CrossRef] [Google Scholar]
  • A. Padhi, K. Pattnaik, M. Biswas, M. Jagadeb, A. Behera, A. Sonawane, Mycobacterium tuberculosis LprE suppresses TLR2-dependent cathelicidin and autophagy expression to enhance bacterial survival in macrophages. J. Immunol. 203, 2665–2678 (2019). doi: 10.4049/jimmunol.1801301. [CrossRef] [PubMed] [Google Scholar]
  • M.S. Diamond, T.D. Kanneganti, Innate immunity: the first line of defense against SARS-CoV-2. Nat. Immunol. 23, 165–176 (2022). doi: 10.1038/s41590-021-01091-0. [CrossRef] [PubMed] [Google Scholar]
  • A. Stierschneider, C. Wiesner, Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front. Immunol. 14, 1–15 (2023). doi: 10.3389/fimmu.2023.1264889. [CrossRef] [Google Scholar]
  • J. Zi, F. Wang, Z. Liu et al., Impact of Toll-like Receptor 4 expression on inflammatory responses related to premature membrane rupture induced by lipopolysaccharide. Discov. Med. 35, 429 (2023). doi: 10.24976/discov.med.202335176.43. [CrossRef] [PubMed] [Google Scholar]
  • H.J. Kim, H. Kim, J.H. Lee, C. Hwangbo, Toll-Like Receptor 4 (TLR4): new insight immune and aging. Immun. Ageing. 20, 1–11 (2023). doi: 10.1186/s12979-023-003833. [CrossRef] [Google Scholar]
  • N.S. Ghatpande, A.V. Misar, R.J. Waghole, S.H. Jadhav, P.P. Kulkarni, Tinospora cordifolia protects against inflammation associated anemia by modulating inflammatory cytokines and hepcidin expression in male Wistar rats. Sci. Rep. 9, 1–11 (2019). doi: 10.1038/s41598-019-47458-0. [CrossRef] [Google Scholar]
  • L. Malaguarnera, Vitamin D3 as potential treatment adjuncts for COVID-19. Nutrients. 12, 1–19 (2020). doi: 10.3390/nu12113512. [Google Scholar]
  • B. Pristiwanto, A. Soewondho, S.B. Sumitro, M. Rifa’i, Inhibition of toll-like receptor 3-4 with ethanolic extract of propolis on innate immunity in diabetes mellitus mice. AIP Conf. Proceeding. 1844, 020008 (2017). doi: 10.1063/1.4983419. [CrossRef] [Google Scholar]
  • A. Mitra et al., Caragana rosea Turcz methanol extract inhibits lipopolysaccharideinduced inflammatory responses by suppressing the TLR4/NF-κB/IRF3 Signaling pathways. Molecules. 26, 1–23 (2021). [Google Scholar]
  • J. Fitzpatrick, B. Hackett, L. Costelloe, W. Hind, E.J. Downer, Botanically-derived Δ9tetrahydrocannabinol and cannabidiol, and their 1:1 combination, modulate toll-like receptor 3 and 4 signalling in immune cells from people with multiple sclerosis. Molecules. 27, 1–22 (2022). [Google Scholar]
  • M. Tao, C. Ji, Y. Wu, J. Dong, Y. Li, O.J. Olatunji, 1,7-dihydroxy-3,4dimethoxyxanthone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppressing TLR4 / NFκ B signaling cascades. Inflammation. 43, 1821–1831 (2020). https://doi.org/10.1007/s10753-020-01256-3. [CrossRef] [PubMed] [Google Scholar]
  • M. Cutolo, R. Campitiello, E. Gotelli, S. Soldano, The Role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front. Immunol. 13, 1–14 (2022). doi: 10.3389/fimmu.2022.867260. [CrossRef] [Google Scholar]
  • E. Verweyen, D. Holzinger, T. Weinhage, et al., Synergistic signaling of TLR and IFNα/β facilitates escape of IL-18 expression from endotoxin tolerance. Am. J. Respir. Crit. Care Med. 201, 526–539 (2020). doi: 10.1164/rccm.201903-0659OC. [CrossRef] [PubMed] [Google Scholar]
  • G. Li, J. Domenico, Y. Jia, J.J. Lucas, E.W. Gelfand, NF-κB-dependent induction of cathelicidin-related antimicrobial peptide in murine mast cells by lipopolysaccharide. Int. Arch. Allergy Immunol. 150, 122–132 (2009). doi: 10.1159/000218115. [CrossRef] [PubMed] [Google Scholar]
  • K. Park, P.M. Elias, Y. Oda et al., Regulation of cathelicidin antimicrobial peptide expression by an Endoplasmic Reticulum (ER) stress signaling, vitamin D receptorindependent pathway. J. Biol. Chem. 286, 34121–34130 (2011). doi: 10.1074/jbc.M111.250431. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.