Open Access
Issue
BIO Web Conf.
Volume 154, 2025
15th International Conference on Global Resource Conservation (ICGRC 2024) in conjunction with the 1st International Conference on Jamu and Alternative Medicine (ICJAM 2024)
Article Number 03010
Number of page(s) 9
Section Jamu and Alternative Medicine
DOI https://doi.org/10.1051/bioconf/202515403010
Published online 28 January 2025
  • R. Kavarthapu, R. Anbazhagan, and M. L. Dufau, Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer, Cancers 13, 4685 (2021). [CrossRef] [PubMed] [Google Scholar]
  • H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians 71, 209 (2021). [CrossRef] [PubMed] [Google Scholar]
  • S. T. Bailey, H. Shin, T. Westerling, X. S. Liu, and M. Brown, Estrogen receptor prevents p53-dependent apoptosis in breast cancer, Proceedings of the National Academy of Sciences 109, 18060 (2012). [CrossRef] [PubMed] [Google Scholar]
  • M. Huang, J.-J. Lu, and J. Ding, Natural products in cancer therapy: past, present and future, Nat. Prod. Bioprospect. 11, 5 (2021). [CrossRef] [PubMed] [Google Scholar]
  • T. N. Aung, Z. Qu, R. D. Kortschak, and D. L. Adelson, Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action, Int J Mol Sci 18, 656 (2017). [CrossRef] [PubMed] [Google Scholar]
  • J. Mann, Natural products in cancer chemotherapy: past, present and future, Nat Rev Cancer 2, 143 (2002). [CrossRef] [PubMed] [Google Scholar]
  • S. Saha and S. Ghosh, Tinospora cordifolia: One plant, many roles, Anc Sci Life 31, 151 (2012). [CrossRef] [PubMed] [Google Scholar]
  • A. K. Upadhyay, K. Kumar, A. Kumar, and H. S. Mishra, Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) – validation of the Ayurvedic pharmacology through experimental and clinical studies, Int J Ayurveda Res 1, 112 (2010). [CrossRef] [PubMed] [Google Scholar]
  • R. Ahsan, A. Mishra, B. Badar, M. Owais, and V. Mishra, Therapeutic application, phytoactives and pharmacology of Tinospora cordifolia: an evocative review, Chin. J. Integr. Med. 29, 549 (2023). [CrossRef] [PubMed] [Google Scholar]
  • A. Chaudhary, R. Das, K. Mehta, and D. K. Mehta, Indian herb Tinospora cordifolia and Tinospora species: Phytochemical and therapeutic application, Heliyon 10, e31229 (2024). [CrossRef] [PubMed] [Google Scholar]
  • M. E. Gondokesumo, K. Budipramana, and S. Q. Aini, Study of jamu as Indonesian herbal medicine for Covid-19 Treatment, in (Atlantis Press, 2021), pp. 227–244. [Google Scholar]
  • L. Priya, B. Balasubramanian, B. Shanmugaraj, S. Subbiah, R.-M. Hu, C.-Y. Huang, and R. Baskaran, Therapeutic potential of the medicinal plant Tinospora cordifolia– Minireview, PHYTON 91, 1129 (2022). [CrossRef] [Google Scholar]
  • R. Verma and A. B. Khan, Antioxidant, immunomodulatory and anticancer potential of Tinospora cordifolia a review, International Journal of Pharmacy and Biological Sciences 8, 54 (2018). [Google Scholar]
  • B. Deepa, H. V. Babaji, J. V. Hosmani, A. W. H. Alamir, S. Mushtaq, A. T. Raj, and S. Patil, Effect of Tinospora cordifolia-derived phytocomponents on cancer: a systematic review, Applied Sciences 9, 5147 (2019). [CrossRef] [Google Scholar]
  • S. Patil, H. Ashi, J. Hosmani, A. Y. Almalki, Y. A. Alhazmi, S. Mushtaq, S. Parveen, H. A. Baeshen, S. Varadarajan, A. T. Raj, V. R. Patil, and N. Vyas, Tinospora cordifolia (Thunb.) Miers (Giloy) inhibits oral cancer cells in a dose-dependent manner by inducing apoptosis and attenuating epithelial-mesenchymal transition, Saudi Journal of Biological Sciences 28, 4553 (2021). [CrossRef] [PubMed] [Google Scholar]
  • P. Sharma, B. P. Dwivedee, D. Bisht, A. K. Dash, and D. Kumar, The chemical constituents and diverse pharmacological importance of Tinospora cordifolia, Heliyon 5, e02437 (2019). [CrossRef] [PubMed] [Google Scholar]
  • V. Anjum, U. Bagale, A. Kadi, I. Potoroko, S. H. Sonawane, and A. Anjum, Unveiling various facades of Tinospora cordifolia stem in food: medicinal and nutraceutical aspects, Molecules 28, 7073 (2023). [CrossRef] [PubMed] [Google Scholar]
  • S. W. Marseti, F. E. Hermanto, M. H. Widyananda, N. Rosyadah, F. S. Kamila, Y. Annisa, D. R. Dwijayanti, S. M. Ulfa, and N. Widodo, Pharmacological potential of Clinacanthus nutans: integrating network pharmacology with experimental studies against lung cancer, Journal of Biologically Active Products from Nature 14, 343 (2024). [CrossRef] [Google Scholar]
  • W. Nurcholis, D. N. Sya’bani Putri, H. Husnawati, S. I. Aisyah, and B. P. Priosoeryanto, Total flavonoid content and antioxidant activity of ethanol and ethyl acetate extracts from accessions of Amomum compactum fruits, Annals of Agricultural Sciences 66, 58 (2021). [CrossRef] [Google Scholar]
  • G. J. Molole, A. Gure, and N. Abdissa, Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin, BMC Chemistry 16, 48 (2022). [CrossRef] [PubMed] [Google Scholar]
  • A. Łukowski, R. Jagiełło, P. Robakowski, D. Adamczyk, and P. Karolewski, Adaptation of a simple method to determine the total terpenoid content in needles of coniferous trees, Plant Science 314, 111090 (2022). [CrossRef] [PubMed] [Google Scholar]
  • P. V. Tan, The determination of total alkaloid, polyphenol, flavonoid and saponin contents of pogang gan (Curcuma sp.), International Journal of Biology 10, p42 (2018) [CrossRef] [Google Scholar]
  • M. Koyanagi, S. Kawakabe, and Y. Arimura, A comparative study of colorimetric cell proliferation assays in immune cells, Cytotechnology 68, 1489 (2016). [CrossRef] [PubMed] [Google Scholar]
  • C. M. Worsley, R. B. Veale, and E. S. Mayne, Inducing apoptosis using chemical treatment and acidic pH, and detecting it using the Annexin V flow cytometric assay, Plos One 17, e0270599 (2022). [CrossRef] [PubMed] [Google Scholar]
  • A. Gupta, P. Gupta, and G. Bajpai, Tinospora cordifolia (Giloy): An insight on the multifarious pharmacological paradigms of a most promising medicinal ayurvedic herb, Heliyon 10, e26125 (2024). [CrossRef] [PubMed] [Google Scholar]
  • A. Royani, M. Hanafi, P. D. N. Lotulung, M. Eka Prastya, C. Verma, A. Alfantazi, and A. Manaf, Parameter processes and their impact on Tinospora cordifolia stem extracts for antibacterial and antioxidant materials, Materials Today: Proceedings (2023). [Google Scholar]
  • P. R. Polu, U. Nayanbhirama, S. Khan, and R. Maheswari, Assessment of free radical scavenging and anti-proliferative activities of Tinospora cordifolia Miers (Willd), BMC Complement Altern Med 17, 457 (2017). [CrossRef] [PubMed] [Google Scholar]
  • A. K. Sharma, S. Kumar, and Pandey, Ferric Reducing, Anti-radical and cytotoxic activities of Tinospora cordifolia stem extracts, Biochem Anal Biochem 03, (2014). [CrossRef] [Google Scholar]
  • A. Jităreanu, A. Trifan, M. Vieriu, I.-C. Caba, I. Mârţu, and L. Agoroaei, Current trends in toxicity assessment of herbal medicines: a narrative review, Processes 11, 83 (2023). [Google Scholar]
  • M. Dhanasekaran, A.-A. Baskar, S. Ignacimuthu, P. Agastian, and V. Duraipandiyan, Chemopreventive potential of epoxy clerodane diterpene from Tinospora cordifolia against diethylnitrosamine-induced hepatocellular carcinoma, Invest New Drugs 27, 347 (2009). [CrossRef] [PubMed] [Google Scholar]
  • V. K. Pandey, B. S. Shankar, and K. B. Sainis, G1-4 A, An arabinogalactan polysaccharide from Tinospora cordifolia increases dendritic cell immunogenicity in a murine lymphoma model, Int Immunopharmacol 14, 641 (2012). [CrossRef] [PubMed] [Google Scholar]
  • R. Mishra and G. Kaur, Aqueous ethanolic extract of Tinospora cordifolia as a potential candidate for differentiation based therapy of glioblastomas, PLoS One 8, e78764 (2013). [CrossRef] [PubMed] [Google Scholar]
  • J. A. Ansari, N. Rastogi, M. K. Ahmad, A. A. Mahdi, A. R. Khan, R. Thakur, V. K. Srivastava, D. P. Mishra, N. Fatima, H. J. Khan, and M. Waseem, ROS mediated proapoptotic effects of Tinospora cordifolia on breast cancer cells, Front Biosci (Elite Ed) 9, 89 (2017). [CrossRef] [PubMed] [Google Scholar]
  • L. C. Crowley, B. J. Marfell, A. P. Scott, and N. J. Waterhouse, quantitation of apoptosis and necrosis by annexin v binding, propidium iodide uptake, and flow cytometry, Cold Spring Harb Protoc 2016, (2016). [Google Scholar]
  • P. Wisitpongpun, N. Suphrom, P. Potup, N. Nuengchamnong, P. C. Calder, and K. Usuwanthim, In vitro bioassay-guided identification of anticancer properties from Moringa oleifera Lam. leaf against the MDA-MB-231 cell line, Pharmaceuticals (Basel) 13, E464 (2020). [Google Scholar]
  • K. C. Rashmi, M. Harsha Raj, M. Paul, K. S. Girish, B. P. Salimath, and H. S. Aparna, A new pyrrole based small molecule from Tinospora cordifolia induces apoptosis in MDA-MB-231 breast cancer cells via ROS mediated mitochondrial damage and restoration of p53 activity, Chemico-Biological Interactions 299, 120 (2019). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.