Open Access
Issue
BIO Web Conf.
Volume 154, 2025
15th International Conference on Global Resource Conservation (ICGRC 2024) in conjunction with the 1st International Conference on Jamu and Alternative Medicine (ICJAM 2024)
Article Number 04003
Number of page(s) 7
Section Jamu Processing Technology
DOI https://doi.org/10.1051/bioconf/202515404003
Published online 28 January 2025
  • W. Muhammad, M. A. Khan, M. Nazir, A. Siddiquah, S. Mushtaq, S. S. Hashmi, B. H. Abbasi, Papaver somniferum L. mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: In-vitro biological applications, biocompatibility and their potential towards HepG2 cell line Mater. Sci. Eng. C 103, 109740 (2019) [CrossRef] [Google Scholar]
  • Z.-R. Mashwani, T. Khan, M. A. Khan, and A. Nadhman, Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects, Appl. Microbiol. Biotechnol. 99, 9923 (2015) [CrossRef] [PubMed] [Google Scholar]
  • T. Joseph, D. Kar Mahapatra, A. Esmaeili, Ł. Piszczyk, M. Hasanin, M. Kattali, J. Haponiuk, and S. Thomas, Nanoparticles: Taking a Unique Position in Medicine, Nanomaterials 13, 574 (2023) [CrossRef] [PubMed] [Google Scholar]
  • F. Aflakian, F. Mirzavi, H. T. Aiyelabegan, A. Soleimani, J. Gholizadeh Navashenaq, I. Karimi-Sani, A. Rafati Zomorodi, and R. Vakili-Ghartavol, Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials, Eur. J. Pharm. Sci. 188, 106515 (2023) [Google Scholar]
  • S. Vigneshvar and B. Senthilkumaran, Current technological trends in biosensors, nanoparticle devices and biolabels: Hi‐tech network sensing applications, Med. Devices Sens. 1, e10011 (2018) [CrossRef] [Google Scholar]
  • S. B. Mayegowda, G. Sarma, M. N. Gadilingappa, S. Alghamdi, A. Aslam, B. Refaat, M. Almehmadi, M. Allahyani, A. A. Alsaiari, A. Aljuaid, and I. S. Al-Moraya, Greensynthesized nanoparticles and their therapeutic applications: A review, Green Process. Synth. 12, 20230001 (2023) [CrossRef] [Google Scholar]
  • D. Chugh, V. S. Viswamalya, and B. Das, Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process, J. Genet. Eng. Biotechnol. 19, 126 (2021) S. [CrossRef] [Google Scholar]
  • Shakeri, M. Ashrafizadeh, A. Zarrabi, R. Roghanian, E. G. Afshar, A. Pardakhty, R. Mohammadinejad, A. Kumar, and V. K. Thakur, Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics, Biomedicines 8, 13 (2020) [CrossRef] [PubMed] [Google Scholar]
  • P. Eslami, F. Rossi, and S. Fedeli, Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications, Pharmaceutics 11, 71 (2019) [CrossRef] [PubMed] [Google Scholar]
  • K. A. Janes, P. Calvo, and M. J. Alonso, Polysaccharide colloidal particles as delivery systems for macromolecules, Adv. Drug Deliv. Rev. 47, 83 (2001) [CrossRef] [Google Scholar]
  • I. A. Sogias, A. C. Williams, and V. V. Khutoryanskiy, Why is Chitosan Mucoadhesive?, Biomacromolecules 9, 1837 (2008) [CrossRef] [PubMed] [Google Scholar]
  • M. Garcia-Fuentes and M. J. Alonso, Chitosan-based drug nanocarriers: Where do we stand?, J. Controlled Release 161, 496 (2012) [CrossRef] [Google Scholar]
  • C. Colonna, B. Conti, P. Perugini, F. Pavanetto, T. Modena, R. Dorati, and I. Genta, Chitosan glutamate nanoparticles for protein delivery: Development and effect on prolidase stability, J. Microencapsul. 24, 553 (2007) [CrossRef] [PubMed] [Google Scholar]
  • Y. Hou, J. Hu, H. Park, and M. Lee, Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications, J. Biomed. Mater. Res. A 100, 939 (2012) [CrossRef] [Google Scholar]
  • W. Fan, W. Yan, Z. Xu, and H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique, Colloids Surf. B Biointerfaces 90, 21 (2012) [CrossRef] [Google Scholar]
  • Y. Huang and Y. Lapitsky, onovalent Salt Enhances Colloidal Stability during the Formation of Chitosan/Tripolyphosphate Microgels, Langmuir 27, 10392 (2011) [CrossRef] [PubMed] [Google Scholar]
  • H. B. Habeeb Rahuman, R. Dhandapani, S. Narayanan, V. Palanivel, R. Paramasivam, R. Subbarayalu, S. Thangavelu, and S. Muthupandian, Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications, IET Nanobiotechnol. 16, 115 (2022) [CrossRef] [PubMed] [Google Scholar]
  • N. S. Alharbi, N. S. Alsubhi, and A. I. Felimban, Characterization and application, J. Radiat. Res. Appl. Sci. 15, 109 (2022) [Google Scholar]
  • T. M. Karpiński, Essential Oils of Lamiaceae Family Plants as Antifungals, Biomolecules 10, 103 (2020) [CrossRef] [PubMed] [Google Scholar]
  • T. P. Gurav, B. B. Dholakia, and A. P. Giri, A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil Phytochem. Rev. 21, 879 (2022) [Google Scholar]
  • K. Zhakipbekov, A. Turgumbayeva, S. Akhelova, K. Bekmuratova, O. Blinova, G. Utegenova, K. Shertaeva, N. Sadykov, K. Tastambek, A. Saginbazarova, K. Urazgaliyev, G. Tulegenova, Z. Zhalimova, and Z. Karasova, Antimicrobial and Other Pharmacological Properties of Ocimum basilicum, Lamiaceae, Molecules 29, 388 (2024) [CrossRef] [Google Scholar]
  • E. M. Zahran, U. R. Abdelmohsen, H. E. Khalil, S. Y. Desoukey, M. A. Fouad, and M. S. Kamel, Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae), Phytochem. Rev. 19, 907 (2020) [CrossRef] [Google Scholar]
  • T. Chowdhury, A. Mandal, S. C. Roy, and D. De Sarker, Sarker, Diversity of the genus Ocimum, J. Genet. Eng. Biotechnol. 15, 275 (2017) [CrossRef] [Google Scholar]
  • H. D. A. Dharsono, S. A. Putri, D. Kurnia, D. Dudi, and M. H. Satari, cimum Species: A Review on Chemical Constituents and Antibacterial Activity, Molecules 27, 6350 (2022) [CrossRef] [PubMed] [Google Scholar]
  • S. Rahayu, S. Widyarti, A. Soewondo, D. I. Prasetyaningrum, and U. Umarudin, A Computational Insights of Ocimum basilicum Flavonoid and Essential Oils Interaction in the Targeting Keap1/SIRT1/NFKB Signaling Pathway, Trop. J. Nat. Prod. Res. 8, 6182 (2024) [Google Scholar]
  • L. Abd EL-Maoula, Potential ameliorative effects of Ocimum basilicum extract and leaves on testicular toxicity induced by sodium arsenite in male rats Afr. J. Biol. Sci. 17, Nat. Prod. Res. 8 (2024) 6182–6191. [Google Scholar]
  • G. Kosari, M. A. Norouzian, B. Khorrami, and A. Najafi, Vet. Anim. Effects of dietary basil (Ocimum basilicum) supplementation on reproductive hormones, semen parameters, and testicular development in Zandi male lambs, Sci. 23, 100338 (2024) [Google Scholar]
  • Altikatoglu, A. Attar, F. Erci, C. Cristache, and I. Isildak, Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activity, Fresenius Environ. Bull. 26, 7832 (2017) [Google Scholar]
  • A. S. Hasna and R. Sivaraj, Ocimum basilicum L. var. purpurascens Benth. LAMIACEAE mediated green synthesis and characterization of titanium dioxide nanoparticles, Adv. Bioresearch 5, 10 (2014) [Google Scholar]
  • G. Parthasarathy, D. Manickam, M. Venkatachalam, and V. Evanjelene, Characterization and Antibacterial activity of Green Synthesized ZnO Nanoparticles from Ocimum basilicum Leaf Extract, Adv. Bioresearch 8, 29 (2017) [Google Scholar]
  • A. R. Malik, S. Sharif, F. Shaheen, M. Khalid, Y. Iqbal, A. Faisal, M. H. Aziz, M. Atif, S. Ahmad, M. Fakhar-e-Alam, N. Hossain, H. Ahmad, and T. Botmart, Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity, J. Saudi Chem. Soc. 26, 101438 (2022) [CrossRef] [Google Scholar]
  • M. A. Qaeed, A. Hendi, A. S. Obaid, A. A. Thahe, A. M. Osman, A. Ismail, A. Mindil, A. A. Eid, F. Aqlan, N. M. A. Osman, A. AL-Farga, S. M. Al-Maaqar, and A. A. Saif, The effect of different aqueous solutions ratios of Ocimum basilicum utilized in AgNPs synthesis on the inhibition of bacterial growth, Sci. Rep. 13, 5866 (2023) [CrossRef] [Google Scholar]
  • R. Tahira, T. Rehan, and M. Naeemullah, Variation in Bioactive Compounds in Different Plant Parts of Lemon Basil (Ocimum basilicum Var Citriodorum), Int. J. Innov. Sci. Math. 1, 33 (2013) [Google Scholar]
  • N. Pisutthanan and S. Pisutthanan, Variability of essential oil constituents of Ocimum africanum, Naresuan Univ. J. 17, 269 (2009) [Google Scholar]
  • K. Makmur, T. Chikmawati, and S. Sobir, Genetic variability of lemon basil (Ocimum × africanum Lour.) from Indonesian archipelago based on morphological and intersimple sequence repeats markers, Biodiversitas J. Biol. Divers. 21, (2020) [CrossRef] [Google Scholar]
  • A. Sholihin and N. Ducha, Pengaruh Kemangi (Ocimum basilicum) Terhadap Kualitas Spermatozoa Mencit (Mus musculus) yang Diberikan Paparan Asap Rokok, LenteraBio Berk. Ilm. Biol. 13, 289 (2024) [CrossRef] [Google Scholar]
  • D. Singh, P. Kumar Chaudhuri, and M. P. Darokar, New Antiproliferative Tricyclic Sesquiterpenoid from the Leaves of Ocimum sanctum, Helv. Chim. Acta 97, 708 (2014) [CrossRef] [Google Scholar]
  • I. E. Joseph, I. F. Jaja, A. H. Boyi, and O. M. Olugbenga, Comparative effects of methanol and oil extracts of Ocimum gratissimum on testicular morphology and epididymal sperm reserve of adult male albino rats (Wistar strain), Toxicol. Rep. 6, 1127 (2019) [CrossRef] [Google Scholar]
  • M. Kumar, S. P. Yadav, P. Pooja, and K. Yadav, Comparative study on effect of ethanolic extract of Ocimum gratissimum leaves as a supplement to extender on chilled dog semen Int. J. Stat. Appl. Math. 8, 325 (2023) [Google Scholar]
  • H. Jonassen, A.-L. Kjøniksen, and M. Hiorth, Effects of ionic strength on the size and compactness of chitosan nanoparticles, Colloid Polym. Sci. 290, 919 (2012) [CrossRef] [Google Scholar]
  • M. Tsai, S. Bai, and R. Chen, Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle, Carbohydr. Polym. 71, 448 (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.