Open Access
Issue |
BIO Web Conf.
Volume 156, 2025
The 6th International Conference on Fisheries, Aquatic, and Environmental Sciences (ICFAES 2024)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 16 | |
Section | Environment (Ecosystem, Habitat Conservation, Climate, Habitat Consultation, Environmental Modeling, Water Resources and Management) | |
DOI | https://doi.org/10.1051/bioconf/202515602013 | |
Published online | 30 January 2025 |
- P. Tchounwou, C. Yedjou, A. Patlolla, D. Sutton, Heavy metals toxicity and the environment. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, 101, Springer, Basel (2014) https://doi.org/10.1007/978-3- 7643-8340-4_6 [Google Scholar]
- N.D. Nnaji, H. Onyeaka, T. Miri, C. Ugwa, Bioaccumulation for heavy metal removal: a review, SN Appl. Sci, 5, 125 (2023) https://doi.org/10.1007/s42452-023-05351-6 [CrossRef] [Google Scholar]
- S. A. Akbar, K. Khairunnisa, Seaweed-based biosorbent for the removal of organic and inorganic contaminants from water: a systematic review. BIO Web Conf. 87, 02011 (2024) [CrossRef] [EDP Sciences] [Google Scholar]
- H.W. Tan, Y.L. Pang, S. Lim, W.C. Chong, A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environ. Technol. Innov. 30, 103043 (2023) https://doi.org/10.1016/j.eti.2023.103043 [CrossRef] [Google Scholar]
- B. Nedjimi, Phytoremediation: a sustainable environmental technology for heavy metals decontamination (2021) [Google Scholar]
- Q. Mahmood, N. Mirza, S. Shaheen, Phytoremediation using algae and macrophytes. In: Phytoremediation: Management of Environmental Contaminants, 2, 265–289 (2015) [Google Scholar]
- S.A. Bhat, O. Bashir, S.A. Ul Haq, T. Amin, A. Rafiq, M. Ali, J.H.P. Américo-Pinheiro, F. Sher, Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 303, 134788 (2022) https://doi.org/10.1016/j.chemosphere.2022.134788 [CrossRef] [PubMed] [Google Scholar]
- R. Saavedra, R. Muñoz, M.E. Taboada, M. Vega, S. Bolado, Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour. Technol. 263, 41101 (2018) https://doi.org/10.1016/j.biortech.2018.04.101 [Google Scholar]
- S. Shanab, A. Essa, E. Shalaby, Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal. Behav. 7, 19173 (2012) https://doi.org/10.4161/psb.19173 [Google Scholar]
- N. Tamilselvan, K. Saurav, K. Kannabiran, Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass. J. Ocean Univ. China 11, 1843 (2012) https://doi.org/10.1007/s11802-012- 1843-8 [Google Scholar]
- T.S. Raza’i, H. Pardi, Nofrizal, V. Amrifo, I. Pangestiansyah Putra, T. Febrianto, A. Fadhli Ilhamdy, Accumulation of essential (copper, iron, zinc) and non-essential (lead, cadmium) heavy metals in Caulerpa racemosa, sea water, and marine sediments of Bintan Island, Indonesia. F1000Res. 10, 54445 (2022) https://doi.org/10.12688/f1000research.54445.2 [Google Scholar]
- S. A. Akbar, M. Hasan, S. Afriani, C. Nuzlia, Evaluation of phytochemical composition and metabolite profiling of macroalgae Caulerpa taxifolia and C. peltata from the Banda Aceh coast, Indonesia. Biodiversitas J. Biol. Divers. 24(10), 5283–5292 (2023) [Google Scholar]
- A.A. Al-Homaidan, H.S. Al-Qahtani, A.A. Al-Ghanayem, F. Ameen, I.B.M. Ibraheem, Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi J. Biol. Sci. 25, 7011 (2018) https://doi.org/10.1016/j.sjbs.2018.07.011 [Google Scholar]
- D. Saranya, S. Shanthakumar, Green microalgae for combined sewage and tannery effluent treatment: Performance and lipid accumulation potential. J. Environ. Manag. 241, 4031 (2019) https://doi.org/10.1016/j.jenvman.2019.04.031 [Google Scholar]
- J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans (2020) [Google Scholar]
- R.S. Riseh, M.G. Vazvani, N. Hajabdollahi, V.K. Thakur, Bioremediation of heavy metals by rhizobacteria, Appl. Biochem. Biotechnol. 195, 4177 (2023) https://doi.org/10.1007/s12010-022-04177-z [Google Scholar]
- B. Zhou, T. Zhang, F. Wang, Microbial-based heavy metal bioremediation: Toxicity and eco-friendly approaches to heavy metal decontamination (2023) [Google Scholar]
- M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals (2014) [Google Scholar]
- A. Alengebawy, S.T. Abdelkhalek, S.R. Qureshi, M.Q. Wang, Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications (2021. [Google Scholar]
- Z. Fu, S. Xi, The effects of heavy metals on human metabolism (2020) [Google Scholar]
- N.E.A. El-Naggar, R.A. Hamouda, I.E. Mousa, M.S. Abdel-Hamid, N.H. Rabei, Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb²⁺ removal from aqueous solutions. Sci. Rep. 8, 31660 (2018) https://doi.org/10.1038/s41598-018-31660-7 [Google Scholar]
- S. A. Akbar, M. Hasan, Evaluation of bioactive composition and phytochemical profile of macroalgae Gracilaria edulis and Acanthophora spicifera from the Banda Aceh Coast, Indonesia. Sci. Technol. Asia 29(1), 194–207 (2024) [Google Scholar]
- R. Roles, F.J. Zhan, B.C. Meyers, Annual Review of Plant Biology. Annu. Rev. Plant Biol. 74, (2023) [Google Scholar]
- H.S. Ali, N.F.E.S. Kandil, I.B.M. Ibraheem, Biosorption of Pb²⁺ and Cr³⁺ ions from aqueous solution by two brown marine macroalgae: An equilibrium and kinetic study. Desalination Water Treat. 206, 1314 (2020) https://doi.org/10.5004/dwt.2020.26314 [Google Scholar]
- L. Deng, Y. Su, H. Su, X. Wang, X. Zhu, Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: Equilibrium, kinetics and environmental effects. Adsorption 12, 503 (2006) https://doi.org/10.1007/s10450-006-0503-y [Google Scholar]
- S. Agarwal, M.F. Albeshr, S. Mahboob, U. Atique, P. Pramanick, A. Mitra, Bioaccumulation factor (BAF) of heavy metals in green seaweed to assess the phytoremediation potential. J. King Saud Univ. Sci. 34, 102078 (2022) https://doi.org/10.1016/j.jksus.2022.102078 [CrossRef] [Google Scholar]
- S. Yalçın, M. Özyürek, Biosorption potential of two brown seaweeds in the removal of chromium. Water Sci. Technol. 78, 7007 (2018) https://doi.org/10.2166/wst.2019.007 [Google Scholar]
- J.R. Guarín-Romero, P. Rodríguez-Estupiñán, L. Giraldo, J.C. Moreno-Piraján, Simple and competitive adsorption study of nickel(II) and chromium(III) on the surface of the brown algae Durvillaea antarctica biomass. ACS Omega 4, 9061 (2019) https://doi.org/10.1021/acsomega.9b02061 [Google Scholar]
- R.A. Hamouda, N.E.A. El-Naggar, N.M. Doleib, A.A. Saddiq, Bioprocessing strategies for cost-effective simultaneous removal of chromium and malachite green by marine alga Enteromorpha intestinalis. Sci. Rep. 10, 70251 (2020) https://doi.org/10.1038/s41598-020-70251-3 [Google Scholar]
- L. Brinza, K. Geraki, C. Cojocaru, S.L. Holdt, M. Neamtu, Baltic Fucus vesiculosus as potential bio-sorbent for Zn removal: Mechanism insight. Chemosphere 238, 124652 (2020) https://doi.org/10.1016/j.chemosphere.2019.124652 [CrossRef] [PubMed] [Google Scholar]
- J. Ye, H. Xiao, B. Xiao, W. Xu, L. Gao, G. Lin, Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticta. Water Sci. Technol. 72, 4386 (2015). https://doi.org/10.2166/wst.2015.386 [Google Scholar]
- S. A. Akbar, A. Mustari, Food packaging based on biodegradable polymers from seaweeds: a systematic review. BIO Web Conf. 87, 01005 (2024) [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.