Open Access
Issue |
BIO Web Conf.
Volume 156, 2025
The 6th International Conference on Fisheries, Aquatic, and Environmental Sciences (ICFAES 2024)
|
|
---|---|---|
Article Number | 02014 | |
Number of page(s) | 14 | |
Section | Environment (Ecosystem, Habitat Conservation, Climate, Habitat Consultation, Environmental Modeling, Water Resources and Management) | |
DOI | https://doi.org/10.1051/bioconf/202515602014 | |
Published online | 30 January 2025 |
- R. Yupiter, S. Arnon, E. Yeshno, I. Visoly-Fisher, O. Dahan, Real-time detection of ammonium in soil pore water. NPJ Clean Water 6, 25 (2023). https://doi.org/10.1038/s41545-023-00243-z [CrossRef] [Google Scholar]
- S.A. Begum, A.H.M. Golam Hyder, Q. Hicklen, T. Crocker, B. Oni, Adsorption characteristics of ammonium onto biochar from an aqueous solution. J. Water Supply Res. Technol. AQUA 70, 113 (2021) https://doi.org/10.2166/aqua.2020.062 [CrossRef] [Google Scholar]
- N. Berenzen, R. Schulz, M. Liess, Effects of chronic ammonium and nitrite contamination on the macroinvertebrate community in running water microcosms. Water Res. 35, 3478 (2001) https://doi.org/10.1016/S0043-1354(01)00055-0 [CrossRef] [Google Scholar]
- E. Koda, P. Osinski, A. Sieczka, D. Wychowaniak, Areal distribution of ammonium contamination of soil-water environment in the vicinity of old municipal landfill site with vertical barrier. Water (Switzerland) 7, 2656 (2015) https://doi.org/10.3390/w7062656 [Google Scholar]
- F. Gao, Y. Xue, P. Deng, X. Cheng, K. Yang, Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 27, 92 (2015) https://doi.org/10.1080/09542299.2015.1087162 [CrossRef] [Google Scholar]
- M. Zhang, X. Dong, X. Li, Y. Jiang, Y. Li, Y. Liang, Review of separation methods for the determination of ammonium/ammonia in natural water. Trends Environ. Anal. Chem. 27, e00098 (2020) https://doi.org/10.1016/j.teac.2020.e00098 [CrossRef] [Google Scholar]
- X. Guo, J. Chen, Y. Shen, H. Li, Y. Zhu, Evolution of the fluorometric method for the measurement of ammonium/ammonia in natural waters: A review. TrAC Trends Anal. Chem. 171, 117519 (2024) https://doi.org/10.1016/j.trac.2024.117519 [CrossRef] [Google Scholar]
- J. Hu, Y. Zhao, W. Yang, J. Wang, H. Liu, P. Zheng, B. Hu, Surface ammonium loading rate shifts ammonia-oxidizing communities in surface water-fed rapid sand filters. FEMS Microbiol. Ecol. 96, fiaa179 (2020) https://doi.org/10.1093/femsec/fiaa179 [CrossRef] [PubMed] [Google Scholar]
- N. van Linden, G.L. Bandinu, D.A. Vermaas, H. Spanjers, J.B. van Lier, Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production. J. Clean Prod. 259, 120788 (2020) https://doi.org/10.1016/j.jclepro.2020.120788 [CrossRef] [Google Scholar]
- M. Mondor, L. Masse, D. Ippersiel, F. Lamarche, D.I. Massé, Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresour. Technol. 99, 7363 (2008) https://doi.org/10.1016/j.biortech.2006.12.039 [CrossRef] [Google Scholar]
- M.E. Mugwili, F.B. Waanders, V. Masindi, E. Fosso-Kankeu, A pilot study on the removal of ammonia from aqueous solution using the integration of struvite synthesis and breakpoint chlorination. Adv. Environ. Technol. 9, 85 (2023) https://doi.org/10.22104/AET.2023.5912.1623 [Google Scholar]
- Z.Y. Li, D. Inoue, M. Ike, Mitigating ammonia-inhibition in anaerobic digestion by bioaugmentation: A review. J. Water Process Eng. 52, 103506 (2023) https://doi.org/10.1016/j.jwpe.2023.103506 [CrossRef] [Google Scholar]
- D. Fazullin, E.A. Kharitonova, V.G. Mavrin, Modification of Thin-Film Polymer Membranes by Microwave Radiation in Ammonia Medium. Int. J. Eng. Technol. 7, 1050 (2018) https://doi.org/10.14419/ijet.v7i4.36.24951 [CrossRef] [Google Scholar]
- J. Zhang, P. Li, J. Lu, F. Xin, X. Zheng, S. Chen, Supercritical water oxidation of ammonia with methanol as the auxiliary fuel: Comparing with isopropanol. Chem. Eng. Res. Des. 147, 160 (2019) https://doi.org/10.1016/j.cherd.2019.05.010 [CrossRef] [Google Scholar]
- Q. Zhang, Z. Liu, F. Petracchini, C. Lu, Y. Li, Z. Zhang, V. Paolini, H. Zhang, Preparation of slow-release insecticides from biogas slurry: Effectiveness of ion exchange resin in the adsorption and release of ammonia nitrogen. Processes 9, 1461 (2021) https://doi.org/10.3390/pr9081461 [CrossRef] [Google Scholar]
- L. Bianchi, K. Kirwan, L. Alibardi, M. Pidou, S.R. Coles, Recovery of ammonia from wastewater through chemical precipitation. J. Therm. Anal. Calorim. 142, 1303 (2020) https://doi.org/10.1007/s10973-019-09108-5 [CrossRef] [Google Scholar]
- S. Kar, R. Singh, P.L. Gurian, A. Hendricks, P. Kohl, S. McKelvey, S. Spatari, Life cycle assessment and techno-economic analysis of nitrogen recovery by ammonia air- stripping from wastewater treatment. Sci. Total Environ. 857, 2023 (2023) https://doi.org/10.1016/j.scitotenv.2022.159499 [Google Scholar]
- S. Husien, R.M. El-taweel, A.I. Salim, I.S. Fahim, L.A. Said, A.G. Radwan, Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling. Curr. Res. Green Sustain. Chem. 5, 100325 (2022) https://doi.org/10.1016/j.crgsc.2022.100325 [CrossRef] [Google Scholar]
- F.I. Zega, R. Selly, M. Zubir, Review of Adsorption of Fe Metal by Activated Carbon Adsorbent. Indones. J. Chem. Sci. Technol. (IJCST) 4, 74 (2021) https://doi.org/10.24114/ijcst.v4i2.27600 [CrossRef] [Google Scholar]
- F. Mashkoor, A. Nasar, Inamuddin, Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environ. Chem. Lett. 18, 605 (2020) https://doi.org/10.1007/s10311-020-00970-6 [Google Scholar]
- S. J. Metcalf, R. E. Critoph, Z. Tamainot-Telto, Optimal cycle selection in carbon- ammonia adsorption cycles. Int. J. Refrig. 35(3), 571–580 (2012) [CrossRef] [Google Scholar]
- A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons. Microporous Mesoporous Mater. 218, 15–23 (2015) [CrossRef] [Google Scholar]
- J. Niu, I. Kasuga, F. Kurisu, H. Furumai, Effects of backwashing on granular activated carbon with ammonium removal potential in a full-scale drinking water purification plant. Water (Switzerland) 10, 1830 (2018) https://doi.org/10.3390/w10121830 [Google Scholar]
- Y. Wang, X. Jiang, X. Song, X. Cao, Z. Xu, Y. Wang, J. Li, N. Wu, J. Bai, Manganese oxide–loaded activated carbon for ammonium removal from wastewater: the roles of adsorption and oxidation. Environ. Sci. Pollut. Res. 30, 110161 (2023) https://doi.org/10.1007/s11356-023-30086-7 [CrossRef] [Google Scholar]
- R. Xue, A. Donovan, H. Zhang, Y. Ma, C. Adams, J. Yang, B. Hua, E. Inniss, T. Eichholz, H. Shi, Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon. J. Environ. Sci. (China) 64, 82 (2018) https://doi.org/10.1016/j.jes.2017.02.010 [CrossRef] [Google Scholar]
- A. Fauzi, Penurunan Kadar Amonia Dengan Menggunakan Arang Aktif Ampas Kopi. CHEMTAG J. Chem. Eng. 1, 52 (2020) https://doi.org/10.56444/cjce.v1i2.1671 [CrossRef] [Google Scholar]
- A. Khalil, N. Sergeevich, V. Borisova, Removal of ammonium from fish farms by biochar obtained from rice straw: Isotherm and kinetic studies for ammonium adsorption. Adsorpt. Sci. Technol. 36, 1294 (2018) https://doi.org/10.1177/0263617418768944 [CrossRef] [Google Scholar]
- Y. Tang, M.S. Alam, K.O. Konhauser, D.S. Alessi, S. Xu, W.J. Tian, Y. Liu, Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. J. Clean Prod. 209, 927 (2019) https://doi.org/10.1016/j.jclepro.2018.10.268 [CrossRef] [Google Scholar]
- S.A. Begum, A.H.M. Golam Hyder, Q. Hicklen, T. Crocker, B. Oni, Adsorption characteristics of ammonium onto biochar from an aqueous solution. J. Water Supply Res. Technol. AQUA 70, 113 (2021) https://doi.org/10.2166/aqua.2020.062 [CrossRef] [Google Scholar]
- C. Wang, J. Ren, X. Qiao, M. Habib, Ammonium removal efficiency of biochar-based heterotrophic nitrifying bacteria immobilization body in water solution. Environ. Eng. Res. 26, 1 (2021) https://doi.org/10.4491/eer.2019.451 [Google Scholar]
- H. Yang, X. Li, Y. Wang, J. Wang, L. Yang, Z. Ma, J. Luo, X. Cui, B. Yan, G. Chen, Effective Removal of Ammonium from Aqueous Solution by Ball-Milled Biochar Modified with NaOH. Processes 11, 1671 (2023) https://doi.org/10.3390/pr11061671 [CrossRef] [Google Scholar]
- H. Sadegh, G.A.M. Ali, Z. Abbasi, M.N. Nadagouda, Adsorption of ammonium ions onto multi-walled carbon nanotubes. Stud. Univ. Babes-Bolyai Chem. 62, 233 (2017) https://doi.org/10.24193/subbchem.2017.2.18 [CrossRef] [Google Scholar]
- W. Intrchom, S. Roy, S. Mitra, Functionalized carbon nanotube immobilized membrane for low temperature ammonia removal via membrane distillation. Sep. Purif. Technol. 235, 116188 (2020) https://doi.org/10.1016/j.seppur.2019.116188 [CrossRef] [Google Scholar]
- A. Jamshidi, S. Rezaei, G. Hassani, R. Jahanpour, H. Marioryad, Optimization and modeling of ammonia removal from aqueous solutions by using adsorption on single- walled carbon nanotubes. J. Eng. Technol. Sci. 53, 210309 (2021) https://doi.org/10.5614/j.eng.technol.sci.2021.53.3.9 [CrossRef] [Google Scholar]
- Y. Tu, P. Feng, Y. Ren, Z. Cao, R. Wang, Z. Xu, Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation. Fuel 238, 34 (2019) https://doi.org/10.1016/j.fuel.2018.10.085 [CrossRef] [Google Scholar]
- M. Sun, S. Gu, X. Liu, J. Zheng, Z. Xu, Y. Chen, H. He, L. Wang, Adsorption mechanism of ammonia nitrogen and phenol on lignite surface: Molecular dynamics simulations and quantum chemical calculations. Fuel 337, 127157 (2023) https://doi.org/10.1016/j.fuel.2022.127157 [CrossRef] [Google Scholar]
- B. Han, W. Zhang, J.Z. He, D. Chen, Lignite ammonia adsorption and surface chemistry after dewatering. Sep. Purif. Technol. 253, 117483 (2020) https://doi.org/10.1016/j.seppur.2020.117483 [CrossRef] [Google Scholar]
- S. A. Akbar, M. Hasan, Facile synthesis of ZnO/RGO/Fe2O3 using macroalgae Caulerpa taxifolia as green reductor and its application as malachite green removal. Bull. Chem. Soc. Ethiop. 39(1), 29–47 (2025) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.