Open Access
Issue |
BIO Web Conf.
Volume 157, 2025
The 5th Sustainability and Resilience of Coastal Management (SRCM 2024)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 10 | |
Section | Environmental and Hazard Mitigation | |
DOI | https://doi.org/10.1051/bioconf/202515703007 | |
Published online | 05 February 2025 |
- K. Heki, Ionospheric disturbances related to earthquakes. Ionosphere dynamics and applications, 511–526 (2021) [Google Scholar]
- G. Sharma, S. Mohanty, S. Kannaujiya, Ionospheric TEC modelling for earthquake precursors from GNSS data. Quaternary International 462, 65–74 (2017) [CrossRef] [Google Scholar]
- M. Shah, Earthquake ionospheric and atmospheric anomalies from GNSS TEC and other satellites. Computers in Earth and Environmental Sciences, 387–399 (2022) [Google Scholar]
- E. Astafyeva, S. Shalimov, E. Olshanskaya, P. Lognonné, Ionospheric response to earthquakes of different magnitudes: Larger quakes perturb the ionosphere stronger and longer. Geophysical Research Letters 40(9), 1675–1681 (2013) [CrossRef] [Google Scholar]
- E. Astafyeva, Ionospheric detection of natural hazards. Reviews of Geophysics 57(4), 1265–1288 (2019) [CrossRef] [Google Scholar]
- G. Savastano, A. Komjathy, O. Verkhoglyadova, A. Mazzoni, M. Crespi, Y. Wei, A. J. Mannucci, Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver: A preliminary feasibility demonstration. Scientific Reports 7(1), 46607 (2017) [CrossRef] [PubMed] [Google Scholar]
- B. Corsa, M. Barba-Sevilla, K. Tiampo, C. Meertens, Integration of DInSAR time series and GNSS data for continuous volcanic deformation monitoring and eruption early warning applications. Remote Sensing 14(3), 784 (2022) [CrossRef] [Google Scholar]
- F. Manta, G. Occhipinti, E. M. Hill, A. Perttu, J. Assink, B. Taisne, Correlation between GNSS‐TEC and eruption magnitude supports the use of ionospheric sensing to complement volcanic hazard assessment. Journal of Geophysical Research: Solid Earth 126(2), e2020JB020726 (2021) [CrossRef] [Google Scholar]
- B. Hu, J. Chen, X. Zhang, Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors 19(14), 3181 (2019) [CrossRef] [PubMed] [Google Scholar]
- U.S. Geological Survey (USGS), M 6.4 - 110 km N of Paciran, Indonesia. Retrieved from https://earthquake.usgs.gov/earthquakes/eventpage/us6000mkfz/executive [Google Scholar]
- M. Scaioni, M. Marsella, M. Crosetto, V. Tornatore, J. Wang, Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors 18, 3682 (2018) [CrossRef] [PubMed] [Google Scholar]
- M. Liao, J. Dong, M. Ao, L. Zhang, X. Shi, Radar remote sensing for potential landslides detection and deformation monitoring. Natl. Remote Sens. Bull. 25, 332–341 (2021) [CrossRef] [Google Scholar]
- Y. Okada, Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992) [CrossRef] [Google Scholar]
- C. Wang, X. Shan, C. Wang, X. Ding, G. Zhang, T. Masterlark, Using finite element and Okada models to invert coseismic slip of the 2008 Mw 7.2 Yutian earthquake, China, from InSAR data. Journal of Seismology 17, 347–360 (2013) [CrossRef] [Google Scholar]
- A. S. Sunil, M. S. Bagiya, Q. Bletery, D. S. Ramesh, Association of ionospheric signatures to various tectonic parameters during moderate to large magnitude earthquakes: Case study. Journal of Geophysical Research: Space Physics 126(3), e2020JA028709 (2021) [CrossRef] [Google Scholar]
- E. Astafyeva, L. M. Rolland, A. Sladen, Strike-slip earthquakes can also be detected in the ionosphere. Earth Planet. Sci. Lett. 405, 180–193 (2014) [CrossRef] [Google Scholar]
- J. F. Dolan, B. D. Haravitch, How well do surface slip measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation. Earth Planet. Sci. Lett. 388, 38–47 (2014) [CrossRef] [Google Scholar]
- T. P. Dooley, G. Schreurs, Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics 574, 1–71 (2012) [CrossRef] [Google Scholar]
- A. Patria, Earthquake geology of the large left-lateral strike-slip fault system at the Pacific and Australian plate margin, Eastern Indonesia. Ph.D. thesis, Doshisha University (2022) [Google Scholar]
- C. Ding, J. J. Dong, M. Le Béon, C. C. Lee, S. K. Ho, S. T. Wang, Characterization of the active fault deformation zone of the Chegualin Fault in the alluvial plain of southwestern Taiwan. Eng. Geol. 342, 107740 (2024) [CrossRef] [Google Scholar]
- S. Aziz, S. Hardjoprawiro, S. A. Magga, Peta Geologi Lembar Bawean dan Masalembo, Jawa (Pusat Penelitian dan Pengembangan Geologi, Bandung, 1993) [Google Scholar]
- H. D. Rachmadhan, J. H. M. Djaya, Volcanic and tectonic interactions in Sangihe Island and Mount Awu: An integrative study in the context of Indonesian geology. J. Geol. Process. Risks Integr. Spat. Model. 1, 39–46 (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.