Open Access
Issue
BIO Web Conf.
Volume 157, 2025
The 5th Sustainability and Resilience of Coastal Management (SRCM 2024)
Article Number 06001
Number of page(s) 16
Section Biofouling Management
DOI https://doi.org/10.1051/bioconf/202515706001
Published online 05 February 2025
  • D. M. Yebra, S. Kiil, and K. Dam-Johansen, “Antifouling technology - Past, present and future steps towards efficient and environmentally friendly antifouling coatings,” Prog. Org. Coatings, vol. 50, no. 2, pp. 75–104, 2004, doi: 10.1016/j.porgcoat.2003.06.001. [CrossRef] [Google Scholar]
  • L. D. Chambers, K. R. Stokes, F. C. Walsh, and R. J. K. Wood, “Modern approaches to marine antifouling coatings,” Surf. Coatings Technol., vol. 201, no. 6, pp. 3642–3652, 2006, doi: 10.1016/j.surfcoat.2006.08.129. [CrossRef] [Google Scholar]
  • M. Hayek, M. Salgues, J.-C. Souche, E. Cunge, C. Giraudel, and O. Paireau, “Influence of the Intrinsic Characteristics of Cementitious Materials on Biofouling in the Marine Environment,” 2021, doi: 10.3390/su13052625. [Google Scholar]
  • A. I. Railkin, Marine biofouling; colonization process and defenses. 2004. [Google Scholar]
  • P. Vuong, A. McKinley, and P. Kaur, “Understanding biofouling and contaminant accretion on submerged marine structures,” npj Mater. Degrad., vol. 7, no. 1, pp. 1–11, 2023, doi: 10.1038/s41529-023-00370-5. [CrossRef] [Google Scholar]
  • G. Gizer, U. Önal, M. Ram, and N. Sahiner, “Biofouling and Mitigation Methods: A Review,” Biointerface Res. Appl. Chem., vol. 13, no. 2, pp. 1–25, 2023, doi: 10.33263/BRIAC132.185. [Google Scholar]
  • I. K. A. P. Utama, Y. A. Hermawan, R. C. Ariesta, S. Risdiyanto, M. Sitinjak, and W. Ardhiyanto, “Protecting the Country from Bio-invasion, a Case Study of Biofouling Management in Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1250, no. 1, 2023, doi: 10.1088/1755-1315/1250/1/012022. [Google Scholar]
  • C. Bressy and M. Lejars, “Marine fouling : An overview marine fouling,” J. Ocean Technol., vol. 9, no. 4, pp. 19–28, 2014. [Google Scholar]
  • T. Yan and W. X. Yan, “Fouling of Offshore Structures in China-a Review,” Biofouling, vol. 19, no. sup1, pp. 133–138, 2003, doi: 10.1080/0892701021000057927. [CrossRef] [Google Scholar]
  • M. L. Hakim, B. Nugroho, M. N. Nurrohman, I. K. Suastika, and I. K. A. P. Utama, “Investigation of fuel consumption on an operating ship due to biofouling growth and quality of anti-fouling coating,” IOP Conf. Ser. Earth Environ. Sci., vol. 339, no. 1, 2019, doi: 10.1088/1755-1315/339/1/012037. [CrossRef] [Google Scholar]
  • H. C. Flemming and J. Wingender, “The biofilm matrix,” Nat. Rev. Microbiol., vol. 8, no. 9, pp. 623–633, 2010, doi: 10.1038/nrmicro2415. [CrossRef] [PubMed] [Google Scholar]
  • L. Karygianni, Z. Ren, H. Koo, and T. Thurnheer, “Biofilm Matrixome: Extracellular Components in Structured Microbial Communities,” Trends Microbiol., vol. 28, no. 8, pp. 668–681, 2020, doi: 10.1016/j.tim.2020.03.016. [CrossRef] [Google Scholar]
  • S. Karačić, O. Modin, P. Hagelia, F. Persson, and B. M. Wilén, “The effect of time and surface type on the composition of biofilm communities on concrete exposed to seawater,” Int. Biodeterior. Biodegrad., vol. 173, no. July, 2022, doi: 10.1016/j.ibiod.2022.105458. [Google Scholar]
  • H. F. Mohamed, A. Abd-Elgawad, R. Cai, Z. Luo, L. Pie, and C. Xu, “Microbial community shift on artificial biological reef structures (ABRs) deployed in the South China Sea,” Sci. Rep., vol. 13, no. 1, pp. 1–15, 2023, doi: 10.1038/s41598-023-29359-5. [CrossRef] [Google Scholar]
  • W. Ding et al., “Anaerobic thiosulfate oxidation by the Roseobacter group is prevalent in marine biofilms,” Nat. Commun., vol. 14, no. 1, pp. 1–14, 2023, doi: 10.1038/s41467-023-37759-4. [Google Scholar]
  • K. Nandakumar, H. Matsunaga, and M. Takagi, “Microfouling Studies on Experimental Test Blocks of Steelmaking Slag and Concrete Exposed to Seawater off Chiba, Japan,” Biofouling, vol. 19, no. 4, pp. 257–267, 2003, doi: 10.1080/0892701032000077158. [CrossRef] [PubMed] [Google Scholar]
  • P. Hughes et al., “Microscopic study into biodeterioration of marine concrete,” Int. Biodeterior. Biodegrad., vol. 79, pp. 14–19, 2013, doi: 10.1016/j.ibiod.2013.01.007. [CrossRef] [Google Scholar]
  • A. S. Natanzi, B. J. Thompson, P. R. Brooks, T. P. Crowe, and C. McNally, “Influence of concrete properties on the initial biological colonisation of marine artificial structures,” Ecol. Eng., vol. 159, no. November 2020, p. 106104, 2021, doi: 10.1016/j.ecoleng.2020.106104. [CrossRef] [Google Scholar]
  • M. Harilal, B. Anandkumar, B. B. Lahiri, R. P. George, J. Philip, and S. K. Albert, “Enhanced biodeterioration and biofouling resistance of nanoparticles and inhibitor admixed fly ash based concrete in marine environments,” Int. Biodeterior. Biodegrad., vol. 155, no. August, p. 105088, 2020, doi: 10.1016/j.ibiod.2020.105088. [CrossRef] [Google Scholar]
  • M. Georges, A. Bourguiba, D. Chateigner, N. Sebaibi, and M. Boutouil, “The study of long-term durability and bio-colonization of concrete in marine environment,” Environ. Sustain. Indic., vol. 10, no. December 2020, p. 100120, 2021, doi: 10.1016/j.indic.2021.100120. [Google Scholar]
  • P. Y. Qian, A. Cheng, R. Wang, and R. Zhang, “Marine biofilms: diversity, interactions and biofouling,” Nat. Rev. Microbiol., vol. 20, no. 11, pp. 671–684, 2022, doi: 10.1038/s41579-022-00744-7. [CrossRef] [PubMed] [Google Scholar]
  • P. J. Schnurr and D. G. Allen, “Factors affecting algae biofilm growth and lipid production: A review,” Renew. Sustain. Energy Rev., vol. 52, no. May, pp. 418–429, 2015, doi: 10.1016/j.rser.2015.07.090. [CrossRef] [Google Scholar]
  • C. C. Gaylarde and B. O. Ortega-Morales, “Biodeterioration and Chemical Corrosion of Concrete in the Marine Environment: Too Complex for Prediction,” Microorganisms, vol. 11, no. 10, pp. 1–17, 2023, doi: 10.3390/microorganisms11102438. [Google Scholar]
  • E. Bastidas-Arteaga, M. Sánchez-Silva, A. Chateauneuf, and M. R. Silva, “Coupled reliability model of biodeterioration, chloride ingress and cracking for reinforced concrete structures,” Struct. Saf., vol. 30, no. 2, pp. 110–129, 2008, doi: 10.1016/j.strusafe.2006.09.001. [CrossRef] [Google Scholar]
  • A. Lence, “Investigation of Best Practices for Maintenance of Concrete Bridge Railings,” 2015. [Google Scholar]
  • C. Gaylarde, M. Ribas Silva, and T. Warscheid, “Microbial impact on building materials: An overview,” Mater. Struct. Constr., vol. 36, no. 259, pp. 342–352, 2003, doi: 10.1617/13867. [CrossRef] [Google Scholar]
  • J. Sempere-Valverde et al., “Location and building material determine fouling assemblages within marinas: A case study in Madeira Island (NE Atlantic, Portugal),” Mar. Pollut. Bull., vol. 187, no. December 2022, 2023, doi: 10.1016/j.marpolbul.2022.114522. [CrossRef] [Google Scholar]
  • W. Al-Kautsar, R. A. Perdanawati, and Noverma, “Laju penempelan macrofouling pada tiang pancang jembatan Suramadu,” J. Ilmu Kelaut. Kepul., vol. 3, no. 2, pp. 211–221, 2020. [Google Scholar]
  • S. P. Putro, M. D. Al Haqi, F. Muhammad, R. Hariyati, and M. Helmi, “The influence of different substrate types on the diversity of macrofouling organisms at the submerged coastal ecosystem of Karimunjawa Islands, Indonesia,” Biodiversitas, vol. 25, no. 8, pp. 3394–3400, 2024, doi: 10.13057/biodiv/d250810. [CrossRef] [Google Scholar]
  • A. Isdianto, O. M. Luthfi, S. T. Thaeraniza, and A. Soegianto, “Biofouling colonization on cubic artificial reefs in pantai damas, trenggalek, Indonesia,” Ecol. Environ. Conserv., vol. 26, no. November, pp. S84–S90, 2020. [Google Scholar]
  • A. R. Syam, S. T. Hartati, and K. Krismono, “Komunitas Biota Penempel Pada Terumbu Buatan Di Perairan Pulau Ganteng Dan Pulau Rakit, Teluk Saleh, Nusa Tenggara Barat,” J. Penelit. Perikan. Indones., vol. 13, no. 2, p. 157, 2007, doi: 10.15578/jppi.13.2.2007.157-166. [Google Scholar]
  • J. Lv, M. Wang, X. Hu, Z. Cao, and H. Ba, “Experimental study on the durability and microstructure of marine concrete covered with barnacles,” Constr. Build. Mater., vol. 317, p. 125900, Jan. 2022, doi: 10.1016/J.CONBUILDMAT.2021.125900. [CrossRef] [Google Scholar]
  • S. Jayakumar and R. Saravanane, “Detrimental effects on coastal concrete by Ulva fasciata,” Proc. Inst. Civ. Eng. Constr. Mater., vol. 163, no. 4, pp. 239–246, 2010, doi: 10.1680/coma.900028. [CrossRef] [Google Scholar]
  • S. Jayakumar and R. Saravanane, “Biodeterioration of coastal concrete structures by macro algae - chaetomorpha antennina,” Mater. Res., vol. 12, no. 4, pp. 465–472, 2009, doi: 10.1590/S1516-14392009000400015. [CrossRef] [Google Scholar]
  • Y. Kawabata, E. Kato, and M. Iwanami, “Enhanced long-term resistance of concrete with marine sessile organisms to chloride ion penetration,” J. Adv. Concr. Technol., vol. 10, no. 4, pp. 151–159, 2012, doi: 10.3151/jact.10.151. [CrossRef] [Google Scholar]
  • M. El-Hawary, H. Al-Khaiat, and S. Fereig, “Performance of epoxy-repaired concrete in a marine environment,” Cem. Concr. Res., vol. 30, no. 2, pp. 259–266, 2000, doi: 10.1016/S0008-8846(99)00242-2. [CrossRef] [Google Scholar]
  • T. Chlayon, M. Iwanami, and N. Chijiwa, “Impacts from concrete microstructure and surface on the settlement of sessile organisms affecting chloride attack,” Constr. Build. Mater., vol. 239, p. 117863, 2020, doi: 10.1016/j.conbuildmat.2019.117863. [CrossRef] [Google Scholar]
  • M. A. Coombes, H. A. Viles, L. A. Naylor, and E. C. La Marca, “Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete?,” Sci. Total Environ., vol. 580, pp. 1034–1045, 2017, doi: 10.1016/j.scitotenv.2016.12.058. [CrossRef] [Google Scholar]
  • H. G. Sonjaya, Cat Antifouling Untuk Penanganan Kerusakan Struktur Jembatan Akibat Biota Penempel. 2016. [Google Scholar]
  • G. Priyotomo, L. Nuraini, H. Gunawan, J. Triwardono, S. Sundjono, and S. Prifiharni, “A Preliminary field study of antifouling paint perfomance after short exposure in Mandara Bali, Indonesia,” Int. J. Eng. Trans. A Basics, vol. 34, no. 4, pp. 976–986, 2021, doi: 10.5829/ije.2021.34.04a.24. [Google Scholar]
  • O. Guillitte, “Bioreceptivity: a new concept for building ecology studies,” Sci. Total Environ., vol. 167, no. 1–3, pp. 215–220, 1995, doi: 10.1016/0048-9697(95)04582-L. [CrossRef] [Google Scholar]
  • S. Romimohtarto, Kasijan; Juwana, BIOLOGI LAUT: Ilmu Pengetahuan Tentang Biota Laut. Djambatan, 2009. [Google Scholar]
  • A. Iswadi, J. S. Porter, and M. C. Bell, “Biofouling Observation In Tropical Waters Of Indonesia For Marine Renewable Energy Sector,” 2nd GEF-UNDP-IMO GloFouling R&D Forum Exhib. Biofouling Prev. Manag. Marit. Ind., 2022. [Google Scholar]
  • A. Bertron, “Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts,” Mater. Struct. Constr., vol. 47, no. 11, pp. 1787–1806, 2014, doi: 10.1617/s11527-014-0433-1. [CrossRef] [Google Scholar]
  • B. Cwalina, “Biodeterioration of concrete,” Archit. Civ. Eng. Environ., vol. 4, pp. 133–140, 2008, doi: 10.1201/9781315119557. [Google Scholar]
  • D. Trejo, P. De Figueiredo, M. Sanchez, C. Gonzalez, S. Wei, and L. Li, “ANALYSIS AND ASSESSMENT OF MICROBIAL BIOFILM-MEDIATED CONCRETE DETERIORATION 5. Report Date 13. Type of Report and Period Covered Unclassified,” vol. 7, no. 2, pp. 8–72, 1700. [Google Scholar]
  • P. Monteiro, “Durability of concrete: ability to resist weathering action, chemical attack, abrasion, or any process of deterioration.,” 2015. [Google Scholar]
  • I. N. Amini and J. J. Ekaputri, The Effect of GGBFS and Additional Cement, Water, and Superplasticizer on the Mechanical Properties of Workable Geopolymer Concrete, vol. 289. Springer Nature Singapore, 2023. [Google Scholar]
  • L. Procópio, “The role of biofilms in the corrosion of steel in marine environments,” World J. Microbiol. Biotechnol., vol. 35, no. 5, 2019, doi: 10.1007/s11274-019-2647-4. [Google Scholar]
  • R. E. Melchers, “Long-term durability of marine reinforced concrete structures,” J. Mar. Sci. Eng., vol. 8, no. 4, 2020, doi: 10.3390/JMSE8040290. [CrossRef] [Google Scholar]
  • R. E. Melchers and I. A. Chaves, “Durable steel-reinforced concrete structures for marine environments,” Sustain., vol. 13, no. 24, 2021, doi: 10.3390/su132413695. [Google Scholar]
  • F. Qu, W. Li, W. Dong, V. W. Y. Tam, and T. Yu, “Durability deterioration of concrete under marine environment from material to structure: A critical review,” J. Build. Eng., vol. 35, no. June 2020, p. 102074, 2021, doi: 10.1016/j.jobe.2020.102074. [CrossRef] [Google Scholar]
  • T. Noeiaghaei, A. Mukherjee, N. Dhami, and S. R. Chae, “Biogenic deterioration of concrete and its mitigation technologies,” Constr. Build. Mater., vol. 149, no. May, pp. 575–586, 2017, doi: 10.1016/j.conbuildmat.2017.05.144. [CrossRef] [Google Scholar]
  • T. Mori et al., “Microbial corrosion of concrete sewer pipes, H2S production from sediments and determination of corrosion rate,” Water Sci. Technol., vol. 23, no. 7–9, pp. 1275–1282, 1991, doi: 10.2166/wst.1991.0579. [CrossRef] [Google Scholar]
  • Y. Wang et al., “Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives,” Int. J. Mol. Sci., vol. 23, no. 10, 2022, doi: 10.3390/ijms23105566. [Google Scholar]
  • E. Joseph, Microorganisms in the deterioration and preservation of cultural heritage. 2021. [Google Scholar]
  • Y. Li and C. Ning, “Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling,” Bioact. Mater., vol. 4, no. January 2019, pp. 189–195, 2019, doi: 10.1016/j.bioactmat.2019.04.003. [Google Scholar]
  • J. R. Bone, R. Stafford, A. E. Hall, and R. J. H. Herbert, “Biodeterioration and bioprotection of concrete assets in the coastal environment,” Int. Biodeterior. Biodegrad., vol. 175, no. February, p. 105507, 2022, doi: 10.1016/j.ibiod.2022.105507. [CrossRef] [Google Scholar]
  • X. Li, S. Li, X. Huang, Y. Chen, J. Cheng, and A. Zhan, “Protein-mediated bioadhesion in marine organisms: A review,” Mar. Environ. Res., vol. 170, no. October 2020, 2021, doi: 10.1016/j.marenvres.2021.105409. [Google Scholar]
  • C. Liang, J. Strickland, Z. Ye, W. Wu, B. Hu, and D. Rittschof, “Biochemistry of Barnacle Adhesion: An Updated Review,” Front. Mar. Sci., vol. 6, no. September, pp. 1–20, 2019, doi: 10.3389/fmars.2019.00565. [CrossRef] [Google Scholar]
  • K. Kamino, K. Inoue, T. Maruyama, N. Takamatsu, S. Harayama, and Y. Shizuri, “Barnacle Cement Proteins,” J. Biol. Chem., vol. 275, no. 35, pp. 27360–27365, 2000, doi: 10.1016/s0021-9258(19)61519-x. [CrossRef] [Google Scholar]
  • T. Chlayon, M. Iwanami, and N. Chijiwa, “Combined protective action of barnacles and biofilm on concrete surface in intertidal areas,” Constr. Build. Mater., vol. 179, pp. 477–487, 2018, doi: 10.1016/j.conbuildmat.2018.05.223. [CrossRef] [Google Scholar]
  • J. F. Lv, J. Z. Mao, and H. J. Ba, “Influence of Crassostrea gigas on the permeability and microstructure of the surface layer of concrete exposed to the tidal zone of the Yellow Sea,” Biofouling, vol. 31, no. 1, pp. 61–70, 2015, doi: 10.1080/08927014.2014.999235. [CrossRef] [PubMed] [Google Scholar]
  • D. Maruzzo, N. Aldred, A. S. Clare, and J. T. Høeg, “Metamorphosis in the cirripede Crustacean Balanus amphitrite,” PLoS One, vol. 7, no. 5, 2012, doi: 10.1371/journal.pone.0037408. [Google Scholar]
  • J. R. Bone, R. Stafford, A. E. Hall, and R. J. H. Herbert, “The intrinsic primary bioreceptivity of concrete in the coastal environment – A review,” Dev. Built Environ., vol. 10, no. April, p. 100078, 2022, doi: 10.1016/j.dibe.2022.100078. [CrossRef] [Google Scholar]
  • R. Miller and A. Macleod, “Marine Growth Mapping and Monitoring: Feasibility of Predictive Mapping of Marine Growth March. A report by SAMS Research Services Ltd to the Offshore Renewable Energy Catapult.,” no. March, p. 69, 2016. [Google Scholar]
  • M. Maduka, F. Schoefs, K. Thiagarajan, and A. Bates, “Hydrodynamic effects of biofouling-induced surface roughness – Review and research gaps for shallow water offshore wind energy structures,” Ocean Eng., vol. 272, no. January, 2023, doi: 10.1016/j.oceaneng.2023.113798. [CrossRef] [Google Scholar]
  • Z. Jaberimanesh, M. Oladi, A. Nasrolahi, and F. Ahmadzadeh, “Presence of Amphibalanus eburneus (Crustacea, Cirripedia) in Gomishan Wetland: Molecular and morphological evidence of a new introduction to the southern Caspian Sea,” Reg. Stud. Mar. Sci., vol. 25, p. 100469, 2019, doi: 10.1016/j.rsma.2018.100469. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.