Open Access
Issue |
BIO Web Conf.
Volume 166, 2025
2025 International Conference on Biomedical Engineering and Medical Devices (ICBEMD 2025)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 7 | |
Section | Medical Information and Technological Innovation Research | |
DOI | https://doi.org/10.1051/bioconf/202516602005 | |
Published online | 10 March 2025 |
- Phillips T, Brierty A, Goodchild D, Patritti BL, Murphy A, Boocock M, et al. Australia and New Zealand Clinical Motion Analysis Group (ANZCMAG) clinical practice recommendations. Gait Posture. 2023;106. [CrossRef] [PubMed] [Google Scholar]
- Ancillao A, Aertbeliën E, De Schutter J. Effect of the soft tissue artifact on marker measurements and on the calculation of the helical axis of the knee during a gait cycle: A study on the CAMS-Knee data set. Hum Mov Sci. 2021;80:102866. doi:10.1016/j.humov.2021.102866 [CrossRef] [PubMed] [Google Scholar]
- Besier TF, Sturnieks DL, Alderson JA, Lloyd DG. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech. 2003;36(8):1159–1168. doi:10.1016/s0021-9290(03)00087-34. [CrossRef] [PubMed] [Google Scholar]
- Bakke D, Besier T. Shape-model scaled gait models can neglect segment markers without consequential change to inverse kinematics results. J Biomech.2022;137:111086. doi:10.1016/j.jbiomech.2022.111086 [CrossRef] [PubMed] [Google Scholar]
- Baudet A, Morisset C, d’Athis P, et al. Cross-talk correction method for knee kinematics in gait analysis using principal component analysis (PCA): a new proposal. PLoS One. 2014;9(7):e102098. Published 2014 Jul 8. doi:10.1371/journal.pone.0102098 [CrossRef] [PubMed] [Google Scholar]
- Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res. 1989;7(6):849–860. doi:10.1002/jor.1100070611 [CrossRef] [PubMed] [Google Scholar]
- Di Pietro A, Bersani A, Curreli C, Di Puccio F. AST: An OpenSim-based tool for the automatic scaling of generic musculoskeletal models. Comput Biol Med. 2024;175:108524. doi:10.1016/j.compbiomed.2024.108524 [CrossRef] [PubMed] [Google Scholar]
- Dunne JJ, Uchida TK, Besier TF, Delp SL, Seth A. A marker registration method to improve joint angles computed by constrained inverse kinematics [published correction appears in PLoS One. 2021 Jul 7;16(7):e0254509. doi: 10.1371/journal.pone.0254509]. PLoS One. 2021;16(5):e0252425. Published 2021 May 28. doi:10.1371/journal.pone.0252425 [CrossRef] [PubMed] [Google Scholar]
- Bakke D, Besier T. Shape model constrained scaling improves repeatability of gait data. J Biomech. 2020;107:109838. doi:10.1016/j.jbiomech.2020.109838 [CrossRef] [PubMed] [Google Scholar]
- Sylvester AD, Lautzenheiser SG, Kramer PA. A review of musculoskeletal modelling of human locomotion. Interface Focus. 2021;11(5):20200060. Published 2021 Aug 13. doi:10.1098/rsfs.2020.0060 [CrossRef] [PubMed] [Google Scholar]
- Akhundov R, Saxby DJ, Diamond LE, et al. Is subject-specific musculoskeletal modelling worth the extra effort or is generic modelling worth the shortcut?. PLoS One. 2022;17(1):e0262936. Published 2022 Jan 25. doi:10.1371/journal.pone.0262936 [CrossRef] [PubMed] [Google Scholar]
- OpenSim’s How Scaling Works [Internet]. OpenSim’s; 2018 [Updated 2018; cited 2024 Jul 23]. Available from: https://opensimconfluence.atlassian.net/wiki/spaces/OpenSim/pages/53089158/How+Scaling+Works. [Google Scholar]
- OpenSim’s How Scaling Works [Internet]. OpenSim’s; 2018 [Updated 2018; cited 2024 Jul 23]. Available from: https://opensimconfluence.atlassian.net/wiki/spaces/OpenSim/pages/53090047/How+Inverse+Kinematics+Works. [Google Scholar]
- Crenna F, Rossi GB, Berardengo M. Filtering Biomechanical Signals in Movement Analysis. Sensors. 2021; 21(13):4580. https://doi.org/10.3390/s21134580 [CrossRef] [PubMed] [Google Scholar]
- Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–1950. doi:10.1109/TBME.2007.90102 [CrossRef] [PubMed] [Google Scholar]
- Poitras, I., Dupuis, F., Bielmann, M., CampeauLecours, A., Mercier, C., Bouyer, L. J., & Roy, J. (2019). Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A Systematic Review. MDPI AG. https://doi.org/10.3390/s19071555 [Google Scholar]
- Seth, A., Sherman, M., Reinbolt, J. A., & Delp, S. L. (2015). OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM, 2, 212. https://doi.org/10.1016/j.piutam.2011.04.021 [CrossRef] [PubMed] [Google Scholar]
- Stagni, R., Fantozzi, S., Cappello, A., & Leardini, A. (2005). Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clinical Biomechanics, 20(3), 320. https://doi.org/10.1016/j.clinbiomech.2004.11.012 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.