Open Access
Issue |
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 12 | |
Section | Land and Environmental Management | |
DOI | https://doi.org/10.1051/bioconf/202516703004 | |
Published online | 19 March 2025 |
- S P. E. G. R. K. Indonesia. Kebijakan Carbon Pricing sebagai Ujung Tombak Mitigasi Perubahan Iklim di Indonesia: Analisa dan Rekomendasi (2021). [Google Scholar]
- M. Muhyiddin. Tantangan Masa Depan dan Visi Indonesia 2045. Bappenas Work. Pap. 2 (2), 319038 (2019). [Google Scholar]
- M. C. Satriagasa, H. Suryatmojo, & A. Kusumandari. Zonasi kerawanan longsor dan strategi arahan mitigasi longsor di DAS Merawu Banjarnegara. Geomedia 18, 39–49 (2020). https://doi.org/10.21831/gm.v18i2.35420 [Google Scholar]
- D. K. Nugraha, B. D. A. Nugroho, & C. Setyawan. Dampak Perubahan Curah Hujan Terhadap Tingkat Kerentanan Erosi Tanah di Sub DAS Merawu, Jawa Tengah. J. Tek. Pertan. Lampung 10, 356–366 (2021). http://dx.doi.org/10.23960/jtep-l.v10i3.356-366 [Google Scholar]
- P. D. Susanti, & A. Miardini. Upaya Pengurangan Risiko Bencana Terkait Perubahan Iklim Analisis Tingkat Kerawanan Dan Teknik Mitigasi Longsor Di Sub Das Merawu in Proceedings of National Geographic UMS - 2016 conference on Hotel Syariah Solo, June 4 (2016), 139–150. [Google Scholar]
- L. M. Mango, A. M. Melesse, M. E. McClain, D. Gann, & S. G. Setegn. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya. Hydrol. Earth Syst. Sci. 15, 22452258 (2011). https://doi.org/10.5194/hess-15-2245-2011 [Google Scholar]
- A. K. Utami, H. Akhsan, & N. Andriani. Dinamika Trend Curah Hujan Ekstrem di Provinsi Kepulauan Bangka Belitung sebagai indikasi dampak Pemanasan Global. J. Online Phys. 9, 49–60 (2024). https://doi.org/10.22437/jop.v9i2.32511 [Google Scholar]
- R. M. Da Silva, C. A. G. Santos, M. Moreira, J. Corte-Real, V. C. L. Silva, & I. C. Medeiros. Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 77, 1205–1221 (2015). https://doi.org/10.1007/s11069-015-1644-7 [Google Scholar]
- D. Ma, Z. Bai, Y.-P. Xu, H. Gu, & C. Gao. Assessing streamflow and sediment responses to future climate change over the Upper Mekong River Basin: A comparison between CMIP5 and CMIP6 models. J. Hydrol. Reg. Stud. 52, 101685 (2024). https://doi.org/10.1016Zj.ejrh.2024.101685 [Google Scholar]
- H. Marhaento, M. J. Booij, T. H. M. Rientjes, & A. Y. Hoekstra. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrol. Process. 31, 20292040 (2017). https://doi.org/10.1002/hyp.11167 [CrossRef] [Google Scholar]
- T. Alemayehu, A. Van Griensven, B. T. Woldegiorgis, & W. Bauwens. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 21, 4449–4467 (2017). https://doi.org/10.5194/hess-21-4449-2017 [CrossRef] [Google Scholar]
- G. Lai, J. Luo, Q. Li, L. Qiu, R. Pan, X. Zeng, L. Zhang, & F. Yi. Modification and validation of the SWAT model based on multi-plant growth mode, a case study of the Meijiang River Basin, China. J. Hydrol. 585, 124778 (2020). https://doi.org/10.1016/j.jhydrol.2020.124778 [Google Scholar]
- H. Marhaento, M. J. Booij, N. Rahardjo, & N. Ahmed. Impacts of forestation on the annual and seasonal water balance of a tropical catchment under climate change. For. Ecosyst. 8, 1–16 (2021). https://doi.org/10.1186/s40663-021-00345-5 [CrossRef] [Google Scholar]
- S. C. S. Deus. Streamflow forecasts due precipitation water in a tropical large watershed at Brazil for flood Early warning, based on SWAT model. ITEGAM-JETIA 4, 4–14 (2018). https://dx.doi.org/10.5935/2447-0228.20180027 [Google Scholar]
- J. Daramola, T. M. Ekhwan, J. Mokhtar, & A. J. Alakeji. Impacts of climatic Variation on water balance and yield of watershed (Insights from The Kaduna Watershed, North Central Nigeria). Indones. J. Geogr. 54, 135–146 (2022). https://doi.org/10.22146/ijg.68138 [Google Scholar]
- Y. Montecelos-Zamora, T. Cavazos, T. Kretzschmar, E. R. Vivoni, G. Corzo, & E. Molina-Navarro. Hydrological modeling of climate change impacts in a Tropical River Basin: A case study of the Cauto River, Cuba. Water 10, 1135 (2018). https://doi.org/10.3390/w10091135 [Google Scholar]
- Z. Darmawan., A. Pratiwi., S. Fadilah. Analisis Potensi Air Baku Menggunakan Model Swat Di Sungai Cipunagara Untuk Kabupaten Indramayu Dan Kabupaten Subang in Proceeding Civil Engineering Research Forum - 2023 conference on Yogyakarta, July, (2023), 336–346 [Google Scholar]
- Y. Anwar, N. A. Sakti, M. Setiawan, & N. Christanto. Kalibrasi dan validasi hidrologi model SWAT di Sub DAS Wakung, Kabupaten Pemalang, Provinsi Jawa Tengah in Proceedings of Seminar Nasional Pengelolaan Pesisir Daerah Aliran Sungai - 2015 conference on Faculty of Geography Yogyakarta, September, (2015), 217–223 [Google Scholar]
- D. Ainunisa, G. Halik, & W. Y. Widiarti. Pemodelan Perubahan Tataguna Lahan Terhadap Debit Banjir DAS Tanggul, Jember Menggunakan Model SWAT (Soil Water Assess. Tool). Rekayasa Sipil 14, 154–161 (2020). https://doi.org/10.21776/ub.rekayasasipil.2020.014.02.10 [Google Scholar]
- T. Prayoga, F. Arifianto, & G. Arno. PROYEKSI TREN SUHU UDARA DI JAWA TIMUR BERDASARKAN SKENARIO RCP 4.5. J. Anal. Kebijak. Kehutanan 20, 103–117 (2023). https://doi.org/10.59100/jakk.2023.20.2.103-117 [Google Scholar]
- A. Waheed, M. H. Jamal, M. F. Javed, & K. I. Muhammad. A CMIP6 multi-model based analysis of potential climate change effects on watershed runoff using SWAT model: A case study of kunhar river basin, Pakistan. Heliyon 10, e28951 (2024). https://doi.org/10.1016/j.heliyon.2024.e28951 [CrossRef] [Google Scholar]
- N. T. Zewde, M. A. Denboba, S. A. Tadesse, & Y. S. Getahun. Predicting runoff and sediment yields using soil and water assessment tool (SWAT) model in the Jemma Subbasin of Upper Blue Nile, Central Ethiopia. Environ. Chall. 14, 100806 (2024). https://doi.org/10.1016/j.envc.2023.100806 [Google Scholar]
- D. P. Van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, & J.-F. Lamarque. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011). https://doi.org/10.1007/s10584-011-0148-z [CrossRef] [Google Scholar]
- G. Di Virgilio, F. Ji, E. Tam, N. Nishant, J. P. Evans, C. Thomas, M. L. Riley, K. Beyer, M. R. Grose, & S. Narsey. Selecting CMIP6 GCMs for CORDEX dynamical downscaling: Model performance, independence, and climate change signals. Earth’s Future 10, e2021EF002625 (2022). https://doi.org/10.1029/2021EF002625 [CrossRef] [Google Scholar]
- F. S. Harahap, R. Oesman, W. Fadhillah, & A. P. Nasution. Penentuan Bulk Density Ultisol Di Lahan Praktek Terbuka Universitas Labuhanbatu. AGROVITAL: J. Ilmu Pertan. 6, 56–59 (2021). http://dx.doi.org/10.35329/agrovital.v6i2.1913 [CrossRef] [Google Scholar]
- D. D. Saputra, A. R. Putrantyo, & Z. Kusuma. Hubungan kandungan bahan organik tanah dengan berat isi, porositas dan laju infiltrasi pada perkebunan salak di Kecamatan Purwosari, Kabupaten Pasuruan. J. Tanah Sumberd. Lahan 5 (1), 647–654 (2018). https://jtsl.ub.ac.id/index.php/jtsl/artide/view/182 [Google Scholar]
- M. Mosbahi, S. Benabdallah, & M. R. Boussema. Sensitivity analysis of a GIS-based model: A case study of a large semi-arid catchment. Earth Sci. Inform. 8, 569–581 (2015). https://doi.org/10.1007/s12145-014-0176-0 [CrossRef] [Google Scholar]
- G. H. Hargreaves, & R. G. Allen. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 129, 53–63 (2003). https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.