Open Access
Issue |
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 6 | |
Section | Land and Environmental Management | |
DOI | https://doi.org/10.1051/bioconf/202516703009 | |
Published online | 19 March 2025 |
- S.A. Abdul-Wahab, F.A. Marikar, The environmental impact of gold mines: pollution by heavy metals. Cent. Eur. J. Eng. 2 (2), 304–313 (2012). https://doi.org/10.2478/s13531-011-0052-3 [Google Scholar]
- A.K. Donkor, J.C.J. Bonzongo, V.K. Nartey, D.K. Adotey, Heavy metals in sediments of the gold mining impacted Pra River basin, Ghana, West Africa. Soil Sediment Contam. 14 (6), 479–503 (2005). https://doi.org/10.1080/15320380500263675 [Google Scholar]
- J.S. Ogola, W.V. Mitullah, M.A. Omulo, Impact of gold mining on the environment and human health: A case study in the Migori Gold Belt, Kenya. Environ. Geochem. Health. 24, 141–158 (2002). [Google Scholar]
- W. Getaneh, T. Alemayehu, Metal contamination of the environment by placer and primary gold mining in the Adola region of southern Ethiopia. Environ. Geol. 50 (3), 339–352 (2006). https://doi.org/10.1007/s00254-006-0213-5 [Google Scholar]
- B.M.M.D. Herath, K.W.A. Madushan, J.P.D. Lakmali, P.N. Yapa, Arbuscular mycorrhizal fungi as a potential tool for bioremediation of heavy metals in contaminated soil. World J. Adv. Res. Rev. 10 (3), 217–228 (2021). https://doi.org/10.30574/wjarr.2021.10.3.0255 [Google Scholar]
- F. Rahman, F. Ilfan, Z. Rodhiyah, M. Ihsan, Potential of local plants as phytoremediation agents to reduce mercury (Hg) metal levels on unlicensed gold mining sites in Sarolangun Regency, Jambi. J. Envirotek. 13 (2), 48–54 (2021). https://doi.org/10.33005/envirotek.v13i2.128 [Google Scholar]
- W.A. Peer, I.R. Baxter, E.L. Richards, J.L. Freeman, A.S. Murphy, Phytoremediation and hyperaccumulator plants. Top. Curr. Genet. 1, 143 (2005). https://doi.org/10.1007/4735 [Google Scholar]
- N. Sasmita, L.L. Komara, I.G.A.D. Yuniti, J.H. Purba, Pioneer plant adaptation at the post coal mining reclamation area in East Kalimantan Indonesia. Sci. Proc. Ser. 1 (3), 15–18 (2019). https://doi.org/10.31580/sps.v1i3.871 [Google Scholar]
- M.K. Allo, Soil physical and chemical conditions in the nickel mined with its effect on growth of trengguli and mahoni. J. Hutan Tropis. 4 (2), 207217 (2016) [Google Scholar]
- B. Kurniawan, D. Duryat, M. Riniarti, S.B. Yuwono, Kemampuan adaptasi tanaman mahoni (Swietenia macrophylla) terhadap cemaran merkuri pada tailing penambangan emas skala kecil. J. Sylva Lestari. 7 (3), 359–369 (2019) [Google Scholar]
- L. Cabral, C.R.F.S. Soares, A.J. Giachini, J.O. Siqueira, Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J. Microbiol. Biotechnol. 31 (11), 1655–1664 (2015). https://doi.org/10.1007/s11274-015-1918-y [Google Scholar]
- A.H. Asy’ari, R. Nirwansyah, Metafora akselerasi dalam objek rancang sirkuit balap drag nasional. J. Sains Seni Pomits. 2 (2), 1–4 (2013) [Google Scholar]
- Suharno, R.P. Sancayaningsih, Fungi Mikoriza Arbuskula: Potensi teknologi mikorizoremediasi logam berat dalam rehabilitasi lahan tambang. Bioteknologi. 10 (1), 23–34 (2013). https://doi.org/10.13057/biotek/c100104 [Google Scholar]
- J.P. Clapp, A.H. Fitter, J.W. Merryweather, Arbuscular mycorrhizas in Methods for the examination of organismal diversity in soils and sediments, (G. S. Hall, P. Lasserre, D. L. Hawksworth, Eds., CAB International, 1996) [Google Scholar]
- P.J. O’Connor, S.E. Smith, F.A. Smith, Arbuscular mycorrhizal associations in the southern Simpson Desert. Aust. J. Bot. 49 (4), 493–499 (2001). https://doi.org/10.1071/BT00014 [CrossRef] [Google Scholar]
- Government Regulation of The Republic of Indonesia, Pub. L. No. 22 Tahun 2021 (2021) [Google Scholar]
- K.M. Rice, E.M. Walker, M. Wu, C. Gillette, E.R. Blough, Environmental mercury and its toxic effects. J. Prev. Med. Public Health. 47, 74–83 (2014). https://doi.org/10.3961/jpmph.2014.47.2.74 [CrossRef] [PubMed] [Google Scholar]
- B.C. Siahaan, S.R. Utami, E. Handayanto, Phytoremediation of mercury-contaminated soil using Lindernia crustacea, Digitaria radicosaa, and Cyperus rotundus and their effects on growth and production of corn plants. J. Soil Land Resour. 1 (2), 35–51 (2014) [Google Scholar]
- Y. Ma, A. Tiwari, J. Bauddh, Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils. Front. Microbiol. 13, 843415 (2022). https://doi.org/10.3389/fmicb.2022.843415 [Google Scholar]
- A.G. Khan, Mycorrhizoremediation—An enhanced form of phytoremediation. J. Zhejiang Univ. Sci. B. 7 (7), 503–514 (2006). https://doi.org/10.1631/jzus.2006.B0503 [Google Scholar]
- D. Kilikily, A. Mariwy, Sunarti, Studi akumulasi logam berat merkuri (Hg) oleh tanaman trembesi (Samanea saman). Sci. Map J. 2 (2), 85–89 (2020). [Google Scholar]
- R. B. Meagher, Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3, 153–162 (2000) [Google Scholar]
- M. Shahid, C. Dumat, S. Khalid, E. Schreck, T. Xiong, N.K. Niazi, Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58 (2017). https://doi.org/10.1016/j.jhazmat.2016.11.063 [Google Scholar]
- E. Janeeshma, J.T. Puthur, Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch. Microbiol. 202 (1), 1–16 (2020). https://doi.org/10.1007/s00203-019-01730-z [CrossRef] [PubMed] [Google Scholar]
- B. Putra, L. Warly, Evitayani, B.P. Utama, Effect of arbuscular mycorrhizal fungi on nutrients and heavy metals uptake by Pennisetum purpureum cv Mott in phytoremediation of gold mine tailings. J. Degrad. Min. Lands Manag. 10 (1), 3795–3802 (2022). https://doi.org/10.15243/jdmlm [Google Scholar]
- A. Roy-Bolduc, M. Hijri, The use of mycorrhizae to enhance phosphorus uptake: A way out the phosphorus crisis. J. Biofertil. Biopestic. 2 (1), 1–5 (2010). https://doi.org/10.4172/2155-6202.1000104 [Google Scholar]
- S.E. Smith, D.J. Read, Mycorrhizal Symbiosis (Academic Press, New York, 2008). https://doi.org/10.2136/sssaj2008.0015br [Google Scholar]
- M. Radziemska, M.D. Vaverková, A. Baryła, Phytostabilization-management strategy for stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health. 14 (9) (2017). https://doi.org/10.2136/sssaj2008.0015br [Google Scholar]
- A.M. Shackira, J.T. Puthur, E. Nabeesa Salim, Acanthus ilicifolius L. a promising candidate for phytostabilization of zinc. Environ. Monit. Assess. 189 (6) (2017). https://doi.org/10.1007/s10661-017-6001-8 [Google Scholar]
- M. Brundrett, N. Bougher, B. Dell, T. Grove, N. Malajczuk, Working with Mycorrhizas in Forestry and Agriculture (Australian Centre for International Agriculture Research, 1996). https://www.researchgate.net/publication/227365112 [Google Scholar]
- M. M. del Montiel-Rozas, Á. López-García, P. Madejón, E. Madejón, Native soil organic matter as a decisive factor to determine the arbuscular mycorrhizal fungal community structure in contaminated soils. Biol. Fertil. Soils 53 (3), 327338 (2017). https://doi.org/10.1007/s00374-017-1181-5 [Google Scholar]
- Q. Chang, F.W. Diao, Q.F. Wang, L. Pan, Z.H. Dang, W. Guo, Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ. Pollut. 241, 607–615 (2018). https://doi.org/10.1016/j.envpol.2018.06.003 [Google Scholar]
- X.L. Li, M. Zhou, F. Shi, B. Meng, J. Liu, Y. Mi, C. Dong, H. Su, X. Liu, F. Wang, Y. Wei, Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): From enriched isotope tracing perspective. Ecotoxicol. Environ. Saf. 255, 1–11 (2003) [Google Scholar]
- P. Madhu, R.S. Sadagopan, Effect of Heavy Metals on Growth and Development of Cultivated Plants with Reference to Cadmium, Chromium and Lead- A Review Effect of Heavy Metals on Growth and Development. J. Stress Physiol. Biochem. 16 (3), 84–102 (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.