Open Access
Issue |
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 9 | |
Section | Smart and Precision Farming | |
DOI | https://doi.org/10.1051/bioconf/202516705001 | |
Published online | 19 March 2025 |
- S. Kar, J. Adinarayana, Deep Learning and Reinforcement Learning Methods for Advancing Sustainable Agricultural and Natural Resource Management, in Harnessing Data Science for Sustainable Agriculture and Natural Resource Management, pp. 201–223 (Springer Nature Singapore, Singapore, 2024). [Google Scholar]
- C. C. Napier, D. M. Cook, L. Armstrong, D. Diepeveen, A synthetic wheat L-system to accurately detect and visualise wheat head anomalies, in Proceedings of the 3rd International Conference on Smart and Innovative Agriculture (ICoSIA), pp. 379–391 (Springer Nature, 2022). [Google Scholar]
- L. Du, R. Zhang, X. Wang, Overview of two-stage object detection algorithms, Journal of Physics: Conference Series 1544, 012033 (2020). [CrossRef] [Google Scholar]
- S. Marin, D. Miller, E. Pimentel, M. Volpe, From axioms to synthetic inference rules via focusing, Annals of Pure and Applied Logic 173(5), 103091 (2022). [CrossRef] [Google Scholar]
- S. Morandage, E. Laloy, A. Schnepf, H. Vereecken, J. Vanderborght, Bayesian inference of root architectural model parameters from synthetic field data, Plant and Soil 467, 67–89 (2021). [Google Scholar]
- F. Seiler, V. Eichinger, I. Effenberger, Synthetic Data Generation for AI-based Machine Vision Applications, Electronic Imaging 36, 1–5 (2024). [Google Scholar]
- B. Basso, L. Liu, Seasonal crop yield forecast: Methods, applications, and accuracies, Advances in Agronomy 154, 201–255 (2019). [CrossRef] [Google Scholar]
- J. M. Benítez, J. L. Castro, I. Requena, Are artificial neural networks black boxes?, IEEE Transactions on Neural Networks 8, 1156–1164 (1997). [CrossRef] [PubMed] [Google Scholar]
- L. G. Silvestri, L. J. Stanek, G. Dharuman, Y. Choi, M. S. Murillo, Sarkas: A fast pure-python molecular dynamics suite for plasma physics, Computer Physics Communications 272, 108245 (2022). [Google Scholar]
- P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants (Springer, New York, NY, 1990). [Google Scholar]
- P. Prusinkiewicz, J. Hanan, Lindenmayer Systems, Fractals, and Plants 79 (Springer Science & Business Media, 2013). [Google Scholar]
- R. Montorio, F. Perez-Cabello, D. B. Alves, A. Garcia-Martin, Unitemporal approach to fire severity mapping using multispectral synthetic databases and Random Forests, Remote Sensing of Environment 249, 112025 (2020). [Google Scholar]
- G. Mountrakis, J. Im, C. Ogole, Support vector machines in remote sensing: A review, ISPRS Journal of Photogrammetry and Remote Sensing 66, 247–259 (2011). [Google Scholar]
- R. M. Sheykhmousa, M. Mahdianpari, Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13, 6308–6325 (2020). [CrossRef] [Google Scholar]
- Z. Jelinek, J. Kumhalova, J. Chyba, M. Wohlmuthova. M. Madaras, F. Kumhala, Landsat and Sentinel-2 images as a tool for the effective estimation of winter and spring cultivar growth and yield prediction in the Czech Republic, International Agrophysics 34(3), 391–406 (2020). [CrossRef] [Google Scholar]
- P. J. Mitchell, F. Waldner, H. Horan, J. N. Brown, Z. Hochman, Data fusion using climatology and seasonal climate forecasts improves estimates of Australian national wheat yields, Agricultural and Forest Meteorology 320, 108932 (2022). [CrossRef] [Google Scholar]
- A. Samourkasidis, I. N. Athanasiadis, A semantic approach for timeseries data fusion, Computers and Electronics in Agriculture 169, 105171 (2020). [Google Scholar]
- S. Fei, M. A. Hassan, Y. Xiao, X. Su, Z. Chen, Q. Cheng, F. Duan, R. Chen, Y. Ma, UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat, Precision Agriculture 24(1), 187–212 (2023). [PubMed] [Google Scholar]
- Z. Zhai, J. Fernan Martinez, V. Beltran, N. Martinez, Decision support systems for agriculture 4.0: Survey and challenges, Computers and Electronics in Agriculture 170, (2020). [Google Scholar]
- Y. Wu, W. Xu, H. Huang, J. Huang, Bayesian posterior-based winter wheat yield estimation at the field scale through assimilation of Sentinel-2 data into WOFOST model, Remote Sensing 14(15), 3727 (2022). [Google Scholar]
- X. Xu, S. Shen, F. Gao, J. Wang, X. Ma, S. Xiong, Z. Fan, Considering different water supplies can improve the accuracy of the WOFOST crop model and remote sensing assimilation in predicting wheat yield, International Agrophysics 36(4), 337–349 (2022). [CrossRef] [Google Scholar]
- H. Dokoohaki, T. Rai, M. Kivi, P. Lewis, J. L. Gómez-Dans, F. Yin, Linking remote sensing with APSIM through emulation and Bayesian optimization to improve yield prediction, Remote Sensing 14(21), 5389 (2022). [Google Scholar]
- D. A. D. Grubert, A synergistic approach to sugarcane yield forecasting using machine learning, remote sensing, and process-based modeling, Doctoral dissertation, Universidade de Sao Paulo (2023). [Google Scholar]
- S. Stiller, K. Grahmann, G. Ghazaryan, M. Ryo, Improving spatial transferability of deep learning models for small-field crop yield prediction, ISPRS Open Journal of Photogrammetry and Remote Sensing 12, 100064 (2024). [Google Scholar]
- W. Zhao, W. Yamada, T. Li, M. Digman, T. Runge, Augmenting crop detection for precision agriculture with deep visual transfer learning—a case study of bale detection, Remote Sensing 13(1), 23 (2020). [Google Scholar]
- S. Fei, Z. Chen, L. Li, Y. Ma, Y. Xiao, Bayesian model averaging to improve the yield prediction in wheat breeding trials, Agricultural and Forest Meteorology 328, 109237 (2023). [CrossRef] [Google Scholar]
- C. M. Utz, Learning ensembles of Bayesian network structures using random forest techniques, Doctoral dissertation, University of Oklahoma (2010). [Google Scholar]
- D. M. Cook, E-Governance of the Forest in Common Property Resource Management, in Amir Khan and Mousumi Majumdar (Eds.), (Academic Foundation, New Delhi, India, 2011). [Google Scholar]
- Blender, The Stichting Blender Foundation, Amsterdam (2018). [Google Scholar]
- E. A. Sekehravani, E. Babulak, M. Masoodi, Implementing canny edge detection algorithm for noisy image, Bulletin of Electrical Engineering and Informatics 9(4), 1404–1410 (2020). [Google Scholar]
- H. Moreno, A. Gómez, S. Altares-López, A. Ribeiro, D. Andújar, Analysis of Stable Diffusion- derived fake weeds performance for training Convolutional Neural Networks, Computers and Electronics in Agriculture 214, 108324 (2023). [Google Scholar]
- V. V. Moca, I. Jincaç, L. Melloni, R. C. Muresan. Visual exploration and object recognition bylattice deformation, PLoS One 6(7), e22831 (2011). [Google Scholar]
- H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese, Generalized intersection over union: A metric and a loss for bounding box regression, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019). [Google Scholar]
- G. Van Rossum, An Introduction to Python (Network Theory Ltd, Bristol, 2003). [Google Scholar]
- E. David, S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu, N. Kirchgessner, G. Ishikawa, M. A. Badhon, C. Pozniak, W. Guo, Global wheat head detection (GWHD) dataset: A large and diverse dataset of high-resolution RGB-labelled images to develop and benchmark wheat head detection methods, Plant Phenomics (2020). [Google Scholar]
- Z. K. Hartley, A. P. French, Domain adaptation of synthetic images for wheat head detection, Plants 10(12), 2633 (2021). [CrossRef] [PubMed] [Google Scholar]
- S. I. Amari, Backpropagation and stochastic gradient descent method, Neurocomputing 5, 185–196 (1993). [CrossRef] [Google Scholar]
- D. Ward, P. Moghadam, N. Hudson, Deep leaf segmentation using synthetic data, arXiv preprint arXiv: 1807.10931 (2018). [Google Scholar]
- C. Mitsanis, W. Hurst, B. Tekinerdogan, A 3D functional plant modelling framework for agricultural digital twins, Computers and Electronics in Agriculture 218, 108733 (2024). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.