Open Access
Issue |
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
|
|
---|---|---|
Article Number | 05006 | |
Number of page(s) | 7 | |
Section | Smart and Precision Farming | |
DOI | https://doi.org/10.1051/bioconf/202516705006 | |
Published online | 19 March 2025 |
- J. Zhang, S. Ren, W. Xu, C. Liang, J. Li, H. Zhang, Y. Li, X. Liu, D. L. Jones, D. R. Chadwick, F. Zhang, K. Wang, Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis, J. Hazard. Mater., 435, 129065 (2022). https://doi.org/10.1016/j.jhazmat.2022.129065 [Google Scholar]
- J. Zhou, Y. Wen, M.R. Marshall, J. Zhao, H. Gui, Y. Yang, Z. Zeng, D. L. Jones, H. Zang, Microplastics as an emerging threat to plant and soil health in agroecosystems, Sci. Total Environ., 787, 147444 (2021). https://doi.org/10.1016/j.scitotenv.2021.147444 [Google Scholar]
- Y. Liu, Y. Ben, R. Che, C. Peng, J. Li, F. Wang, Uptake, transport and accumulation of micro- and nano-plastics in terrestrial plants and health risk associated with their transfer to food chain - A mini review, Sci. Total Environ., 902, 166045 (2023). https://doi.org/10.1016/j.scitotenv.2023.166045 [Google Scholar]
- R. S. Quilliam, C. J. Pow, D. J. Shilla, J. J. Mwesiga, D. A. Shilla, L. Woodford, Microplastics in agriculture - a potential novel mechanism for the delivery of human pathogens onto crops, Front. Plant Sci., 14, 1–7 (2023). https://doi.org/10.3389/fpls.2023.1152419 [CrossRef] [Google Scholar]
- C. Zhu, Y. Kanaya, M. Tsuchiya, R. Nakajima, H. Nomaki, T. Kitahashi, K. Fujikura. Optimization of a hyperspectral imaging system for rapid detection of microplastics down to 100 gm, MethodsX, 8, 101175 (2021). https://doi.org/10.1016/j.mex.2020.101175 [Google Scholar]
- L. Xu, Y. Chen, A. Feng, X. Shi, Y. Feng, Y. Yang, Y. Wang, Z. Wu, Z. Zou, W. Ma, Y. He, N. Yang, J. Feng, Y. Zhao, Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology, Environ. Res., 232, 116389 (2023). https://doi.org/10.1016/j.envres.2023.116389 [Google Scholar]
- K. Dorau, M. Hoppe, D. Rückamp, J. Köser, G. Scheeder, K. Scholz, E. Fries, Status quo of operation procedures for soil sampling to analyze microplastics, Microplastics and Nanoplastics, 3, 1 (2023). https://doi.org/10.1186/s43591-023-00063-5 [Google Scholar]
- Z. Qiu, S. Zhao, X. Feng, Y. He, Transfer learning method for plastic pollution evaluation in soil using NIR sensor, Sci. Total Environ., 740, 140118 (2020). https://doi.org/10.1016/j.scitotenv.2020.140118 [Google Scholar]
- Y. Sun, J. Yuan, T. Zhou, Y. Zhao, F. Yu, J. Ma, Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review, Environ. Pollut., 265, 114864 (2020). https://doi.org/10.1016/j.envpol.2020.114864 [Google Scholar]
- J. Shan, J. Zhao, L. Liu, Y. Zhang, X. Wang, F. Wu, A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics, Environ. Pollut., 238, 121–129 (2018). https://doi.Org/10.1016/j.envpol.2018.03.026 [CrossRef] [Google Scholar]
- C. Vidal, C. Pasquini, A comprehensive and fast microplastics identification based on near-infrared hyperspectral imaging (HSI-NIR) and chemometrics, Environ. Pollut., 285, 117251 (2021). https://doi.org/10.1016/j.envpol.2021.117251 [Google Scholar]
- W. Ai, S. Liu, H. Liao, J. Du, Y. Cai, C. Liao, H. Shi, Y. Lin, M. Junaid, X. Yue, J. Wang, Application of hyperspectral imaging technology in the rapid identification of microplastics in farmland soil, Sci. Total Environ., 807, 151030 (2022). https://doi.org/10.1016/j.scitotenv.2021.151030 [Google Scholar]
- W. Ai, G. Chen, X. Yue, J. Wang, Application of hyperspectral and deep learning in farmland soil microplastic detection, J. Hazard. Mater., 445, 130568 (2023). https://doi.org/10.1016/j.jhazmat.2022.130568 [Google Scholar]
- S. Zhao, Z. Qiu, Y. He, Transfer learning strategy for plastic pollution detection in soil: Calibration transfer from high-throughput HSI system to NIR sensor, Chemosphere, 272, 129908 (2021). https://doi.org/10.1016/j.chemosphere.2021.129908 [Google Scholar]
- X. Xu, Q. Liu, H. Zhang, L. Han, X. Liu, The research on the molecular spectroscopic recognition mechanism of microplastics in typical agricultural media, Vib. Spectrosc., 103624 (2023). https://doi.org/10.1016/j.vibspec.2023.103624 [Google Scholar]
- F. Pedregosa, G. Varoquaux, A. Gramfort, et al., Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830 (2011). [MathSciNet] [Google Scholar]
- F. Corradini, H. Bartholomeus, E. Huerta Lwanga, H. Gertsen, V. Geissen, Predicting soil microplastic concentration using vis-NIR spectroscopy, Sci. Total Environ., 650, 922–932 (2019). https://doi.org/10.1016/j.scitotenv.2018.09.101 [Google Scholar]
- W. Ng, B. Minasny, A. McBratney, Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy, Sci. Total Environ., 702, 134723 (2020). https://doi.org/10.1016/j.scitotenv.2019.134723 [Google Scholar]
- Paul, L. Wander, R. Becker, C. Goedecke, U. Braun, High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil, Environ. Sci. Pollut. Res., 26, 7364–7374 (2019). https://doi.org/10.1007/s11356-018-2180-2 [Google Scholar]
- A. Dellacasa Bellingegni, E. Gruppioni, G. Colazzo, A. Davalli, R. Sacchetti, E. Guglielmelli, L. Zollo, NLR, MLP, SVM, and LDA: A comparative analysis on EMG data from people with trans-radial amputation, J. Neuroeng. Rehabil., 14, 1–16 (2017). https://doi.org/10.1186/s12984-017-0290-6 [Google Scholar]
- H. Chen, T. Shin, B. Park, K. Ro, C. Jeong, H-.Ju Jeon, P-,L. Tan, Coupling hyperspectral imaging with machine learning algorithms for detecting polyethylene (PE) and polyamide (PA) in soils, J. Hazard. Mater., 471, 134346 (2024). https://doi.org/10.1016/j.jhazmat.2024.134346 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.