Open Access
Issue
BIO Web Conf.
Volume 170, 2025
71st International Scientific Conference “FOOD SCIENCE, ENGINEERING AND TECHNOLOGY – 2024”
Article Number 03009
Number of page(s) 11
Section Food Process Engineering
DOI https://doi.org/10.1051/bioconf/202517003009
Published online 01 April 2025
  • P. Petrova, I. Ivanov, L. Tsigoriyna, N. Valcheva, E. Vasileva, T. Parvanova-Mancheva, A. Arsov, K. Petrov, Traditional Bulgarian Dairy Products: Ethnic Foods with Health Benefits. Microorganisms. 9, 480, (2021) https://doi.org/10.3390/microorganisms9030480. [CrossRef] [Google Scholar]
  • J. Lukinac M. Jukič, K. Mastanjević, M. Lučan, Application of computer vision and image analysis method in cheese-quality evaluation: a review. Ukrainian Food Journal, 7(2), pp 192-214, (2018) [Google Scholar]
  • T. Lei, D.W. Sun, Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review. Trends in Food Science & Technology, 88, pp 527-542, ISSN 0924-2244. (2019). https://doi.org/10.1016/j.tifs.2019.04.013 [Google Scholar]
  • A. Loddo, C. Di Ruberto, G. Armano, A. Manconi, Automatic Monitoring Cheese Ripeness Using Computer Vision and Artificial Intelligence. IEEE Access. 10, 122612–122626. (2022). [Google Scholar]
  • M. Caccamo, C. Melilli, D.M. Barbano, G. Portelli, G. Marino, G. Licitra, Measurement of Gas Holes and Mechanical Openness in Cheese by Image Analysis, Journal of Dairy Science, 87(3):739-748, ISSN 0022-0302, (2004). https://doi.org/10.3168/jds.S0022-0302(04)73217-8 [Google Scholar]
  • T. Jeliński, C. Du, D. Sun, J. Fornal, Inspection of the distribution and amount of ingredients in pasteurized cheese by computer vision, Journal of Food Engineering, 83: 3-9, (2007). https://doi.org/10.1016/j.jfoodeng.2006.12.020 [Google Scholar]
  • P.S. Minz, C.S. Saini, Comparison of computer vision system and colour spectrophotometer for colour measurement of mozzarella cheese, Applied Food Research, 1(2), 100020, ISSN 2772-5022, (2021). https://doi.org/10.1016/j.afres.2021.100020 [Google Scholar]
  • J. Das, P. Lage, A. Garrido, E. Machado, C. Conceição, S. Gomes, A. Martins, A. Paulino, M.F. Duarte, N. Alvarenga, Evaluation of gas holes in “Queijo de Nisa” PDO cheese using computer vision. J Food Sci Technol, 3, pp 1072-1080, (2021). https://doi.org/10.1007/s13197-020-04621-0 [Google Scholar]
  • A. Caraffa, M. Ricci, M. Lecca, C. Modena, E. Aprea, F. Gasperi and S. Messelodi, A Deep Learning Approach for Estimating the Rind Thickness of Trentingrana Cheese from Images. In Proceedings of the 3rd International Conference on Image Processing and Vision Engineering - IMPROVE; ISBN 978-989-758-642-2; ISSN 2795-4943, SciTePress, pages 76-83, (2023). https://doi.org/10.5220/0011830000003497 [Google Scholar]
  • A. Danev, A. Bosakova-Ardenska, P. Boyanova, P. Panayotov, L. Kostadinova-Georgieva, Cheese quality evaluation by image segmentation: Image segmentation algorithm for broken surface evaluation of Bulgarian white cheese in brine. ACM International Conference Proceeding Series, (2019). https://doi.org/10.1145/3345252.3345258 [Google Scholar]
  • M. Mladenov, S. Penchev and M. Deyanov, Complex assessment of food products quality using analysis of visual images, spectrophotometric and hyperspectral characteristics. International Journal of Engineering and Innovative Technology (IJEIT), 4 (12): 23-32, (2015) [Google Scholar]
  • M. Kutryanska, A. Bosakova-Ardenska, P. Boyanova, P. Panayotov, IceColor: A software tool for color evaluation with application in food development. AIP Conf. Proc. 21, 3063 (1): 030003, (2024). https://doi.org/10.1063/5.0195737 [Google Scholar]
  • M. Milev, K. Nikolova, I. Ivanova, M. Dobreva, Usage of K-cluster and factor analysis for grouping and evaluation the quality of olive oil in accordance with physico-chemical parameters, AIP Conference Proceedings 1690 (1), 020021, (2015) [Google Scholar]
  • M. Milev, K. Nikolova, I. Ivanova, S. Minkova, T. Evtimov, S. Krustev, Grouping of Bulgarian wines according to grape variety by using statistical methods, AIP Conference Proceedings 1910 (1), 020003, (2017) [Google Scholar]
  • W. Mokrzycki, M. Tatol, Color difference Delta E– A survey, Machine Graphics and Vision, 20(4), pp 383-411, (2011). [Google Scholar]
  • M. T. Rohit, M. K. Ashish, Digital Image Processing using SCILAB. Springer, Cham, (2019) [Google Scholar]
  • C. A. Schneider, W. S. Rasband, K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675, (2012) [CrossRef] [PubMed] [Google Scholar]
  • S. Rahmawati, R. Devita, R. H. Zain, E. Rianti, N. Lubis, A. Wanto, Prewitt and Canny Methods on Inversion Image Edge Detection: An Evaluation, Journal of Physics: Conference Series, vol. 1933, paper 012039, (2021). https://doi.org/10.1088/1742-6596/1933/1/012039 [Google Scholar]
  • V. G. Narendra, K. S. Hareesh, Study and comparison of various image edge detection techniques used in quality inspection and evaluation of agricultural and food products by computer vision, International Journal of Agricultural and Biological Engineering, 4(2): 83, (2011). https://doi.org/10.3965/j.issn.1934-6344.2011.02.083-090 [Google Scholar]
  • K.A. Kurnia, F. Saputra, C.T. Luong, M.J.M. Roldan, T.-S. Cheng, C.-D. Hsiao, Performance Comparison of Five Methods Available in ImageJ for Bird Counting and Detection from Video Datasets. Inventions, 9, 55, (2024). https://doi.org/10.3390/inventions9030055 [Google Scholar]
  • J.A. Fernandez-Gallego, P. Lootens, I. Borra-Serrano, V. Derycke, G. Haesaert, I. Roldán-Ruiz, J.L. Araus, S.C. Kefauver, Automatic wheat ear counting using machine learning based on RGB UAV imagery. Plant J. 103(4):1603-1613, (2020). https://doi.org/10.1111/tpj.14799 [Google Scholar]
  • A. Akalin, S. Gönç, Y. Akbaş, Variation in organic acids content during ripening of pickled white cheese. Journal of Dairy Science, 85 (7): 1670–1676, (2002) [Google Scholar]
  • S. Claps, G. Cifuni, L. Sepe, V. Fedele, Effect of diet botanical composition in grazing goats on mono and sesqui-terpenes content in milk. In: Proceeding of Annual Meeting of the European Association for Animal Production, Rome, Italy, pp. 342, (2003) [Google Scholar]
  • K. Møller, P. Rattray, P. Bredie, E. Høier, Y. Ardö, Physicochemical and sensory characterization of Cheddar cheese with variable NaCl levels and equa moisture content. Journal of Dairy Science, 96(4): 1953–1971, (2013b) [Google Scholar]
  • A. Rulikowska, N. Kilcawley, A. Doolan, M. Alonso-Gomez, B. Nongonierma, A. Hannon, G. Wilkinson, The impact of reduced sodium chloride content on Cheddar cheese quality. International Dairy Journal, 28(2): 45–55, (2013) [Google Scholar]
  • T. Guinee, P. Fox, Salt in cheese: Physical, chemical and biological aspects. In P. L. H. McSweeney, P. F. Fox, T. M. Cogan, & T. P. Guinee (Eds.), Cheese: Chemistry, physics and microbiology 3rd ed., vol. 1, pp. 207–259. London, UK: Elsevier Ltd., (2004) [Google Scholar]
  • P. Guinee, T. O’Kennedy, Reducing salt in cheese and dairy spreads. In D. Kilcast & F. Angus (Eds.). Reducing salt in foods, pp. 316–357, Cambridge, UK: Woodhead Publishing Limited, (2007) [Google Scholar]
  • P. Guinee, J. Sutherland, Cheese: Salting of cheese. Encyclopedia of Dairy Sciences, 1: 595–606, (2011) [Google Scholar]
  • S. Agarwal, R. Powers, G. Swanson, S. Chen, S. Clark, Influence of salt-to-moisture ratio on starter culture and calcium lactate crystal formation. Journal of Dairy Science, 91(8): 2967–2980, (2008) [Google Scholar]
  • G. Tansman, P. Kindstedt, J. Hughes, Crystal fingerprinting: elucidating the crystals of Cheddar, Parmigiano-Reggiano, Gouda, and soft washed- rind cheeses using powder x-ray diffractometry. Dairy Sci. & Technol. 95:651–664, (2015) [Google Scholar]
  • P. D'Incecco, L. Pellegrino, J. Hogenboom, P. Cocconcelli, D. Bassi, The late blowing defect of hard cheeses: Behaviour of cells and spores of Clostridium tyrobutyricum throughout the cheese manufacturing and ripening. LWT, 87: 134-141, (2018) [CrossRef] [Google Scholar]
  • M. Mladenov, Complex Assessment of Dairy and Meat Products Quality, Information Technologies and Control, 13: 19 – 7, (2015). https://doi.org/10.1515/itc-2016-0012 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.