Open Access
Issue |
BIO Web Conf.
Volume 172, 2025
International Conference on Nurturing Innovative Technological Trends in Engineering – BIOscience (NITTE-BIO 2025)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 13 | |
Section | Environmental Biotechnology / Bioprocess Control | |
DOI | https://doi.org/10.1051/bioconf/202517203001 | |
Published online | 10 April 2025 |
- Abhilash, P.C. et al.: Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater. 170, 2–3, 791–797 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.035. [CrossRef] [Google Scholar]
- Afaj, A.H. et al.: Effects of lead toxicity on the total chlorophyll content and growth changes of the aquatic plant Ceratophyllumdemersum L. International Journal of Environmental Studies. 74, 1, 119–128 (2017). https://doi.org/10.1080/00207233.2016.1220723. [CrossRef] [Google Scholar]
- Ali, M.B. et al.: Phytoremediation of Lead, Nickel, and Copper by Salix acmophyllaBoiss.: Role of Antioxidant Enzymes and Antioxidant Substances. Bull Environ ContamToxicol. 70, 3, 462–469 (2003). https://doi.org/10.1007/s00128-003-0009-1. [CrossRef] [PubMed] [Google Scholar]
- Alia, Saradhi, P.P.: Proline Accumulation Under Heavy Metal Stress. J Plant Physiol. 138, 5, 554–558 (1991). https://doi.org/10.1016/S0176-1617(11)80240-3. [CrossRef] [Google Scholar]
- Arnon, D.I.: The Chloroplast as a Complete Photosynthetic Unit. Science (1979). 122, 3157, 9–16 (1955). https://doi.org/10.1126/science.122.3157.9. [CrossRef] [PubMed] [Google Scholar]
- Bates, L.S. et al.: Rapid determination of free proline for water-stress studies. Plant Soil. 39, 1, 205–207 (1973). https://doi.org/10.1007/BF00018060. [CrossRef] [Google Scholar]
- Chaturvedi, R. et al.: Harnessing Pisum sativum–Glomus mosseae symbiosis for phytoremediation of soil contaminated with lead, cadmium, and arsenic. Int J Phytoremediation. 23, 3, 279–290 (2021). https://doi.org/10.1080/15226514.2020.1812507. [CrossRef] [PubMed] [Google Scholar]
- Chengatt, A.P. et al.: Chelate assisted phytoextraction for effective rehabilitation of heavy metal(loid)s contaminated lands. Int J Phytoremediation. 25, 8, 981–996 (2023). https://doi.org/10.1080/15226514.2022.2124233. [CrossRef] [PubMed] [Google Scholar]
- Erdoğan, E.M., Özkan, M.: Chromium and Lead Phytoremediation with Water Hyacinth and Use of Contaminated Biomass as Feedstock for Biofuel Production. Biomass Convers Biorefin. (2023). https://doi.org/10.1007/s13399-023-04680-1. [Google Scholar]
- Farombi, E.O. et al.: Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River. Int J Environ Res Public Health. 4, 2, 158–165 (2007). https://doi.org/10.3390/ijerph2007040011. [CrossRef] [PubMed] [Google Scholar]
- Gulzar, A.B.M., Mazumder, P.B.: Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environmental Science and Pollution Research. 29, 27, 40319–40341 (2022). https://doi.org/10.1007/s11356-022-19756-0. [CrossRef] [PubMed] [Google Scholar]
- Gupta, D.K. et al.: Lead tolerance in plants: strategies for phytoremediation. Environmental Science and Pollution Research. 20, 4, 2150–2161 (2013). https://doi.org/10.1007/s11356-013-1485-4. [CrossRef] [PubMed] [Google Scholar]
- Hedge JE, H.B.W.R.: Carbohydrate chemistry. Academic Press, New York. 17, 371–80 (1962). [Google Scholar]
- Iftikhar, A. et al.: Salinity modulates lead (Pb) tolerance and phytoremediation potential of quinoa: a multivariate comparison of physiological and biochemical attributes. Environ Geochem Health. 44, 1, 257–272 (2022). https://doi.org/10.1007/s10653-021-00937-8. [CrossRef] [PubMed] [Google Scholar]
- Lekshmi, S. et al.: Critical analysis of sustainable ways of removing insidious pollutants from the environment through phytoremediation techniques. Chemistry and Ecology. 1–26 (2024). https://doi.org/10.1080/02757540.2024.2365164. [Google Scholar]
- Mitra, A. et al.: Potential of nano-phytoremediation of heavy metal contaminated soil: emphasizing the role of mycorrhizal fungi in the amelioration process. International Journal of Environmental Science and Technology. 21, 8, 6405–6428 (2024). https://doi.org/10.1007/s13762-024-05466-2. [CrossRef] [Google Scholar]
- Naz, M. et al.: Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. Chemosphere. 365, 143397 (2024). https://doi.org/10.1016/j.chemosphere.2024.143397. [CrossRef] [PubMed] [Google Scholar]
- Paul, S. et al.: Evaluation of water quality and toxicity after exposure of lead nitrate in fresh water fish, major source of water pollution. Egypt J Aquat Res. 45, 4, 345–351 (2019). https://doi.org/10.1016/j.ejar.2019.09.001. [CrossRef] [Google Scholar]
- Qiao, X. et al.: Lead tolerance mechanism in sterilized seedlings ofPotamogeton crispus L.: Subcellular distribution, polyamines and proline. Chemosphere. 120, 179–187 (2015). https://doi.org/10.1016/j.chemosphere.2014.06.055. [CrossRef] [PubMed] [Google Scholar]
- Raj, K., Das, A.P.: Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology. 5, 79–85 (2023). https://doi.org/10.1016/j.enceco.2023.02.001. [CrossRef] [Google Scholar]
- Ribeiro de Souza, S.C. et al.: Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manage. 110, 299–307 (2012). https://doi.org/10.1016/j.jenvman.2012.06.015. [CrossRef] [Google Scholar]
- Sharma, P.: Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresour Technol. 328, 124835 (2021). https://doi.org/10.1016/j.biortech.2021.124835. [CrossRef] [Google Scholar]
- Siddiqui, H. et al.: Phytoremediation of Cadmium Contaminated Soil Using Brassica juncea: Influence on PSII Activity, Leaf Gaseous Exchange, Carbohydrate Metabolism, Redox and Elemental Status. Bull Environ ContamToxicol. 105, 3, 411–421 (2020). https://doi.org/10.1007/s00128-020-02929-3. [CrossRef] [PubMed] [Google Scholar]
- Turpeinen, R. et al.: Mobility and Bioavailability of Lead in Contaminated Boreal Forest Soil. Environ Sci Technol. 34, 24, 5152–5156 (2000). https://doi.org/10.1021/es001200d. [CrossRef] [Google Scholar]
- Ullah, R. et al.: Phytoremediation of Lead and Chromium Contaminated Soil Improves with the Endogenous Phenolics and Proline Production in Parthenium, Cannabis, Euphorbia, and Rumex Species. Water Air Soil Pollut. 230, 2, 40 (2019). https://doi.org/10.1007/s11270-019-4089-x. [CrossRef] [Google Scholar]
- Yoon, J. et al.: Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment. 368, 2–3, 456–464 (2006). https://doi.org/10.1016/j.scitotenv.2006.01.016. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.