Open Access
Issue |
BIO Web Conf.
Volume 172, 2025
International Conference on Nurturing Innovative Technological Trends in Engineering – BIOscience (NITTE-BIO 2025)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 15 | |
Section | Environmental Biotechnology / Bioprocess Control | |
DOI | https://doi.org/10.1051/bioconf/202517203004 | |
Published online | 10 April 2025 |
- Kulczycki, P. (2021, November 7). The environmental impact of dyes in fashion. SANVT. https://sanvt.com/blogs/journal/the-environmental-impact-of-dyes-in-fashion [Google Scholar]
- Afkhami, A., & Moosavi, R. (2009). Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. Journal of Hazardous Materials, 174(1–3), 398–403. https://doi.org/10.1016/j.jhazmat.2009.09.066 [Google Scholar]
- Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060 [CrossRef] [Google Scholar]
- Cao, J., Lin, J., Fang, F., Zhang, M., & Hu, Z. (2014). A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies. Bioresource Technology, 163, 199–205. https://doi.org/10.1016/j.biortech.2014.04.046 [CrossRef] [PubMed] [Google Scholar]
- Kandisa, R. V., & Kv, N. S. (2016). Dye Removal by Adsorption: A review. Journal of Bioremediation & Biodegradation, 07(06). https://doi.org/10.4172/2155-6199.1000371 [CrossRef] [Google Scholar]
- Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., Yang, S., Sun, Y., Zhang, K., Xu, J., Zheng, W., Hu, Z., Yang, Y., Gao, Y., Chen, Y., Zhang, X., Gao, F., & Zhang, Y. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere, 211, 235–253. https://doi.org/10.1016/j.chemosphere.2018.06.179 [CrossRef] [PubMed] [Google Scholar]
- Obi, F., Ugwuishiwu, B., & Nwakaire, J. (2016). AGRICULTURAL WASTE CONCEPT, GENERATION, UTILIZATION AND MANAGEMENT. Nigerian Journal of Technology, 35(4), 957. https://doi.org/10.4314/njt.v35i4.34 [CrossRef] [Google Scholar]
- Ramos-Vargas, S., Huirache-Acuña, R., Rutiaga-Quiñones, J. G., & Cortés-Martínez, R. (2020). Effective lead removal from aqueous solutions using cellulose nanofibers obtained from water hyacinth. Water Science & Technology Water Supply, 20(7), 2715–2736. https://doi.org/10.2166/ws.2020.173 [CrossRef] [Google Scholar]
- Norrrahim, M. N. F., Kasim, N. a. M., Knight, V. F., Misenan, M. S. M., Janudin, N., Shah, N. a. A., Kasim, N., Yusoff, W. Y. W., Noor, S. a. M., Jamal, S. H., Ong, K. K., & Yunus, W. M. Z. W. (2021). Nanocellulose: a bioadsorbent for chemical contaminant remediation. RSC Advances, 11(13), 7347–7368. https://doi.org/10.1039/d0ra08005e [CrossRef] [PubMed] [Google Scholar]
- Vincent, P., Ham-Pichavant, F., Michaud, C., Mignani, G., Mastroianni, S., Cramail, H., & Grelier, S. (2021). Extraction and Characterization of Hemicelluloses from a Softwood Acid Sulfite Pulp. Polymers, 13(13), 2044. https://doi.org/10.3390/polym13132044 [CrossRef] [PubMed] [Google Scholar]
- Nilsson C. Master’s Thesis. Lund University; Lund, Sweden: 2017. Preparation and Characterization of Nanocellulose from Wheat Bran. [Google Scholar]
- Mateo, S., Peinado, S., Morillas-Gutiérrez, F., La Rubia, M. D., & Moya, A. J. (2021). Nanocellulose from Agricultural Wastes: Products and Applications—A Review. Processes, 9(9), 1594. https://doi.org/10.3390/pr9091594 [CrossRef] [Google Scholar]
- Naz, S., Ahmad, N., Akhtar, J., Ahmad, N. M., Ali, A., & Zia, M. (2016). Management of citrus waste by switching in the production of nanocellulose. IET Nanobiotechnology, 10(6), 395–399. https://doi.org/10.1049/iet-nbt.2015.0116 [CrossRef] [PubMed] [Google Scholar]
- Sandesh, K., Kumar, R. S., & JagadeeshBabu, P. E. (2012). Rapid removal of cobalt (II) from aqueous solution using cuttlefish bones; equilibrium, kinetics, and thermodynamic study. Asia-Pacific Journal of Chemical Engineering, 8(1), 144–153. https://doi.org/10.1002/apj.1639 [Google Scholar]
- Kaur, S., Rani, S., & Mahajan, R. K. (2012). Adsorption kinetics for the removal of hazardous dye congo red by biowaste materials as adsorbents. Journal of Chemistry, 2013(1). https://doi.org/10.1155/2013/628582 [Google Scholar]
- Ponnusamy, S., & Subramaniam, R. (2013). Process optimization studies of Congo red dye adsorption onto cashew nut shell using response surface methodology. International Journal of Industrial Chemistry, 4(1), 17. https://doi.org/10.1186/2228-5547-4-17 [CrossRef] [Google Scholar]
- Chukki, J., Abinandan, S., & Shanthakumar, S. (2018). Chrysanthemum indicum microparticles on removal of hazardous Congo red dye using response surface methodology. International Journal of Industrial Chemistry, 9(4), 305–316. https://doi.org/10.1007/s40090-018-0160-5 [CrossRef] [Google Scholar]
- Lafi, R., Montasser, I., & Hafiane, A. (2018). Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorption Science & Technology, 37(1–2), 160–181. https://doi.org/10.1177/0263617418819227 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.