Open Access
Issue |
BIO Web Conf.
Volume 174, 2025
2025 7th International Conference on Biotechnology and Biomedicine (ICBB 2025)
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 5 | |
Section | Innovations in Therapeutics and Disease Mechanisms | |
DOI | https://doi.org/10.1051/bioconf/202517402019 | |
Published online | 12 May 2025 |
- Chan R J, Feng G S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase[J]. Blood, 2007, 109(3): 862-867. [CrossRef] [PubMed] [Google Scholar]
- Tang K, Zhao M, Wu Y H, et al. Structure-based design, synthesis and biological evaluation of aminopyrazines as highly potent, selective, and cellularly active allosteric SHP2 inhibitors[J]. European Journal of Medicinal Chemistry, 2022, 230: 114106. [CrossRef] [Google Scholar]
- Song Y, Zhao M, Zhang H, et al. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials[J]. Pharmacology & therapeutics, 2022, 230: 107966. [CrossRef] [Google Scholar]
- Song Y, Zhao M, Wu Y, et al. A multifunctional cross-validation high-throughput screening protocol enabling the discovery of new SHP2 inhibitors[J]. Acta Pharmaceutica Sinica B, 2021, 11(3): 750-762. [CrossRef] [Google Scholar]
- Chen Y N P, LaMarche M J, Chan H M, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases[J]. Nature, 2016, 535(7610): 148-152. [CrossRef] [PubMed] [Google Scholar]
- Yuan X, Bu H, Zhou J, et al. Recent advances of SHP2 inhibitors in cancer therapy: current development and clinical application[J]. Journal of medicinal chemistry, 2020, 63(20): 11368-11396. [CrossRef] [PubMed] [Google Scholar]
- Song Y H, Yang X Y, Yu B. KRAS Q61H mutation confers cancer cells with acquired resistance to SHP2 inhibition[J]. Pharmaceutical Fronts, 2022, 4(01): e40-e42. [Google Scholar]
- Athota J P, Bhat M, Nampoothiri S, et al. Molecular and clinical studies in 107 Noonan syndrome affected individuals with PTPN11 mutations[J]. BMC medical genetics, 2020, 21: 1-10. [CrossRef] [Google Scholar]
- Fobare S, Sharpe C, Quinn K, et al. PTPN11 Mutation Clonal Hierarchy in Acute Myeloid Leukemia[J]. bioRxiv, 2024: 2024.09. 18.612239. [Google Scholar]
- Yuan Y, Fan Y, Gao Z, et al. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3β signaling pathway[J]. Cancer biology & medicine, 2020, 17(3): 707. [CrossRef] [PubMed] [Google Scholar]
- Asmamaw M D, Shi X J, Zhang L R, et al. A comprehensive review of SHP2 and its role in cancer[J]. Cellular Oncology, 2022, 45(5): 729-753. [CrossRef] [PubMed] [Google Scholar]
- Chen W S, Liang Y, Zong M, et al. Single-cell transcriptomics reveals opposing roles of Shp2 in Myc-driven liver tumor cells and microenvironment[J]. Cell reports, 2021, 37(6). [Google Scholar]
- Chen X, Keller S J, Hafner P, et al. Tyrosine phosphatase PTPN11/SHP2 in solid tumors-bull’s eye for targeted therapy[J]. Frontiers in Immunology, 2024, 15: 1340726. [CrossRef] [Google Scholar]
- Kanumuri R, Kumar Pasupuleti S, Burns S S, et al. Targeting SHP2 phosphatase in hematological malignancies[J]. Expert opinion on therapeutic targets, 2022, 26(4): 319-332. [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Mohseni M, Grauel A, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms[J]. Scientific reports, 2021, 11(1): 1399. [CrossRef] [Google Scholar]
- Chen AYC, Haura E, Pacheco J, et al. Abstract LB050: Modulation of innate and adaptive immunity in blood and tumor of patients receiving the SHP2 inhibitor RMC-4630 [J]. Cancer Res, 2021, 81: LB050. [CrossRef] [Google Scholar]
- Song Y, Yang X, Wang S, et al. Crystallographic landscape of SHP2 provides molecular insights for SHP2 targeted drug discovery[J]. Medicinal Research Reviews, 2022, 42(5): 1781-1821. [CrossRef] [PubMed] [Google Scholar]
- Shojaei F, Shojaei F, Ricono JM, et al. HBI-2376, HUYABIO clinical stage SHP2 inhibitor, possess robust in vitro potency and in vivo efficacy in several preclinical tumor models carrying KrasG12C or EGFR mutations [J]. Cancer Res, 2022, 82: 1041. [CrossRef] [Google Scholar]
- Chou YT, Bivona TG. Inhibition of SHP2 as an approach to block RAS-driven cancers [J]. Adv Cancer Res, 2022, 153: 205-236. [CrossRef] [PubMed] [Google Scholar]
- Krishnan T, Roberts-Thomson R, Broadbridge V, et al. Targeting mutated KRAS genes to treat solid tumours [J]. Mol Diagn Ther, 2022, 26: 39-49. [CrossRef] [PubMed] [Google Scholar]
- Fedele C, Li S, Teng K W, et al. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling[J]. Journal of Experimental Medicine, 2020, 218(1): e20201414. [Google Scholar]
- Liu Q, Qu J, Zhao M, et al. Targeting SHP2 as a promising strategy for cancer immunotherapy[J]. Pharmacological research, 2020, 152: 104595. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.