Open Access
Issue
BIO Web Conf.
Volume 174, 2025
2025 7th International Conference on Biotechnology and Biomedicine (ICBB 2025)
Article Number 02020
Number of page(s) 6
Section Innovations in Therapeutics and Disease Mechanisms
DOI https://doi.org/10.1051/bioconf/202517402020
Published online 12 May 2025
  • Nepal, K. K., Wang, G. (2019) Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol. Adv., 37: 1–20. [CrossRef] [Google Scholar]
  • Quinn, G. A., Banat, A. M., Abdelhameed, A. M., Banat, I.M. (2020) Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J. Med. Microbiol., 69: 1040–1048. [CrossRef] [PubMed] [Google Scholar]
  • Li, B., Li, X., Yan, T. (2021) A Quantitative Metagenomic Sequencing Approach for High-Throughput Gene Quantification and Demonstration with Antibiotic Resistance Genes. Appl. Environ. Microbiol., 87: e0087121. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, N., Dong, Y., Zhou, H., Cui, H. (2022) Effect of PAS-LuxR Family Regulators on the Secondary Metabolism of Streptomyces. Antibiotics, 11: 12. [Google Scholar]
  • Yang, Z., Qiao, Y., Strøbech, E., Morth, J. P., Walther, G., Jørgensen, T. S., Lum, K. Y., Peschel, G., Rosenbaum, M. A., Previtali, V., Clausen, M. H., Lukassen, M. V., Gotfredsen, C. H., Kurzai, O., Weber, T., Ding, L. (2024) Alligamycin A, an antifungal β-lactone spiroketal macrolide from Streptomyces iranensis. Nat. Commun., 15: 9259. [CrossRef] [Google Scholar]
  • Nielsen, J. B., Gren, T., Mohite, O. S., Jørgensen, T. S., Klitgaard, A. K., Mourched, A. S., Blin, K., Oves-Costales, D., Genilloud, O., Larsen, T. O., Tanner, D., Weber, T., Gotfredsen, C. H., Charusanti, P. (2022) Identification of the Biosynthetic Gene Cluster for Pyracrimycin A, an Antibiotic Produced by Streptomyces sp. ACS Chem. Biol., 17: 2411–2417. [CrossRef] [PubMed] [Google Scholar]
  • Park, J. S., Kim, D. E., Hong, S. C., Kim, S. Y., Kwon, H. C., Hyun, C. G., Choi, J. (2021) Genome Analysis of Streptomyces nojiriensis JCM 3382 and Distribution of Gene Clusters for Three Antibiotics and an Azasugar across the Genus Streptomyces. Microorganisms, 9: 9. [Google Scholar]
  • Lee, N., Kim, W., Hwang, S., Lee, Y., Cho, S., Palsson, B., Cho, B.K. (2020) Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci. Data, 7: 55. [CrossRef] [Google Scholar]
  • Ren, D., Ruszczycky, M. W., Ko, Y., Wang, S. A., Ogasawara, Y., Kim, M., Liu, H.W. (2020) Characterization of the coformycin biosynthetic gene cluster in Streptomyces kaniharaensis. Proc. Natl. Acad. Sci. USA, 117: 10265–10270. [CrossRef] [PubMed] [Google Scholar]
  • Liu, D. Y., Li, Y., Magarvey, N.A. (2016) Draft Genome Sequence of Streptomyces canus ATCC 12647, a Producer of Telomycin. Genome Announc., 4: 2. [Google Scholar]
  • Liu, J., Nothias, L. F., Dorrestein, P. C., Tahlan, K., Bignell, D.R.D. (2021) Genomic and Metabolomic Analysis of the Potato Common Scab Pathogen Streptomyces scabiei. ACS Omega, 6: 11474–11487. [CrossRef] [PubMed] [Google Scholar]
  • Alam, K., Islam, M. M., Islam, S., Hao, J., Abbasi, M. N., Hayat, M., Shoaib, M., Zhang, Y., Li, A. (2022) Comparative genomics with evolutionary lineage in Streptomyces bacteria reveals high biosynthetic potentials. World J. Microbiol. Biotechnol., 39: 64. [Google Scholar]
  • Jiang, B., You, B., Tan, L., Yu, S., Li, H., Bai, G., Li, S., Rao, X., Xie, Z., Shi, X., Peng, Y., Hu, X. (2018) Clinical Staphylococcus argenteus Develops to Small Colony Variants to Promote Persistent Infection. Front. Microbiol., 9: 1347. [CrossRef] [Google Scholar]
  • Braesel, J., Lee, J. H., Arnould, B., Murphy, B. T., Eustáquio, A.S. (2019) Diazaquinomycin Biosynthetic Gene Clusters from Marine and Freshwater Actinomycetes. J. Nat. Prod., 82: 937–946. [CrossRef] [PubMed] [Google Scholar]
  • Kouprina, N., Larionov, V. (2016) Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma, 125: 621–632. [CrossRef] [PubMed] [Google Scholar]
  • Bauman, K. D., Li, J., Murata, K., Mantovani, S. M., Dahesh, S., Nizet, V., Luhavaya, H., Moore, B.S. (2019) Refactoring the Cryptic Streptophenazine Biosynthetic Gene Cluster Unites Phenazine, Polyketide, and Nonribosomal Peptide Biochemistry. Cell Chem. Biol., 26: 724–736.e7. [CrossRef] [Google Scholar]
  • Li, L., Liu, X., Jiang, W., Lu, Y. (2019) Recent Advances in Synthetic Biology Approaches to Optimize Production of Bioactive Natural Products in Actinobacteria. Front. Microbiol., 10: 2467. [CrossRef] [Google Scholar]
  • Bu, Q. T., Yu, P., Wang, J., Li, Z. Y., Chen, X. A., Mao, X. M., Li, Y.Q. (2019) Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Microb. Cell Fact., 18: 16. [CrossRef] [Google Scholar]
  • Myronovskyi, M., Rosenkränzer, B., Nadmid, S., Pujic, P., Normand, P., Luzhetskyy, A. (2018) Generation of a cluster-free Streptomyces albus chassis strain for improved heterologous expression of secondary metabolite clusters. Metab. Eng., 49: 316–324. [CrossRef] [Google Scholar]
  • Bibb, M. J., Janssen, G. R., Ward, J.M. (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene, 38: 215–226. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, M. M., Wong, F. T., Wang, Y., Luo, S., Lim, Y. H., Heng, E., Yeo, W. L., Cobb, R. E., Enghiad, B., Ang, E. L., Zhao, H. (2017) CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol, 13: 607-609. [CrossRef] [Google Scholar]
  • Wang, K., Liu, X. F., Bu, Q. T., Zheng, Y., Chen, X. A., Li, Y. Q., Mao, X.M. (2019) Transcriptome-Based Identification of a Strong Promoter for Hyper-production of Natamycin in Streptomyces. Curr. Microbiol., 76: 95–99. [CrossRef] [PubMed] [Google Scholar]
  • Kim, D. G., Gu, B., Cha, Y., Ha, J., Lee, Y., Kim, G., Cho, B. K., Oh, M.K. (2025) Engineered CRISPR-Cas9 for Streptomyces sp. genome editing to improve specialized metabolite production. Nat. Commun., 16: 874. [CrossRef] [Google Scholar]
  • Gu, B., Kim, D. G., Kim, D. K., Kim, M., Kim, H. U., Oh, M.K. (2023) Heterologous overproduction of oviedomycin by refactoring biosynthetic gene cluster and metabolic engineering of host strain Streptomyces coelicolor. Microb. Cell Fact., 22: 212. [CrossRef] [Google Scholar]
  • Hackl, S., Bechthold, A. (2015) The Gene bldA, a regulator of morphological differentiation and antibiotic production in Streptomyces. Arch. Pharm., 348: 455–462. [CrossRef] [PubMed] [Google Scholar]
  • Xu, J., Zhang, J., Zhuo, J., Li, Y., Tian, Y., Tan, H. (2017) Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. J. Biol. Chem., 292: 19708–19720. [CrossRef] [Google Scholar]
  • Wang, B., Guo, F., Dong, S. H., Zhao, H. (2019) Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol., 15: 111–114. [CrossRef] [PubMed] [Google Scholar]
  • Xu, J., Tozawa, Y., Lai, C., Hayashi, H., Ochi, K. (2002) A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Mol. Genet. Genomics, 268: 179–189. [CrossRef] [PubMed] [Google Scholar]
  • Shaikh, A. A., Nothias, L. F., Srivastava, S. K., Dorrestein, P. C., Tahlan, K. (2021) Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus. Metabolites, 11: 4. [Google Scholar]
  • Bekiesch, P., Basitta, P., Apel, A.K. (2016) Challenges in the Heterologous Production of Antibiotics in Streptomyces. Arch. Pharm., 349: 594–601. [CrossRef] [PubMed] [Google Scholar]
  • Zhao, Y., Li, G., Chen, Y., Lu, Y. (2020) Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules, 10: 5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.