Open Access
Issue |
BIO Web Conf.
Volume 174, 2025
2025 7th International Conference on Biotechnology and Biomedicine (ICBB 2025)
|
|
---|---|---|
Article Number | 02024 | |
Number of page(s) | 7 | |
Section | Innovations in Therapeutics and Disease Mechanisms | |
DOI | https://doi.org/10.1051/bioconf/202517402024 | |
Published online | 12 May 2025 |
- Bou Zerdan, M., Ghorayeb, T., Saliba, F., Allam, S., Bou Zerdan, M., Yaghi, M., Bilani, N., Jaafar, R., & Nahleh, Z. (2022). Triple Negative Breast Cancer: Updates on Classification and Treatment in 2021. Cancers, 14(5), Article 5. https://doi.org/10.3390/cancers14051253 [PubMed] [Google Scholar]
- The Society of Breast Cancer China Anti-Cancer Association, International Medical Exchange Society, & China Anti-Cancer Associatio. (2024). Guidelines for diagnosis and treatment of advanced breast cancer in China (2024 edition). Chinese Journal of Oncology, 46(06), Article 06. https://doi.org/10.3760/cma.j.cn112152-20240118-00034 [Google Scholar]
- Bianchini, G., De Angelis, C., Licata, L., & Gianni, L. (2022). Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nature Reviews Clinical Oncology, 19(2), 91–113. https://doi.org/10.1038/s41571-021-00565-2 [CrossRef] [PubMed] [Google Scholar]
- Zagami, P., & Carey, L. A. (2022). Triple negative breast cancer: Pitfalls and progress. Npj Breast Cancer, 8(1), 1–10. https://doi.org/10.1038/s41523-022-00468-0 [CrossRef] [PubMed] [Google Scholar]
- Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., & Pietenpol, J. A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750–2767. https://doi.org/10.1172/JCI45014 [CrossRef] [PubMed] [Google Scholar]
- Lehmann, B. D., Jovanović, B., Chen, X., Estrada, M. V., Johnson, K. N., Shyr, Y., Moses, H. L., Sanders, M. E., & Pietenpol, J. A. (2016). Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PloS One, 11(6), e0157368. https://doi.org/10.1371/journal.pone.0157368 [CrossRef] [PubMed] [Google Scholar]
- Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A. W., Savage, M. I., Osborne, C. K., Hilsenbeck, S. G., Chang, J. C., Mills, G. B., Lau, C. C., & Brown, P. H. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 21(7), 1688–1698. https://doi.org/10.1158/1078-0432.CCR-14-0432 [CrossRef] [PubMed] [Google Scholar]
- Jiang, Y.-Z., Ma, D., Suo, C., Shi, J., Xue, M., Hu, X., Xiao, Y., Yu, K.-D., Liu, Y.-R., Yu, Y., Zheng, Y., Li, X., Zhang, C., Hu, P., Zhang, J., Hua, Q., Zhang, J., Hou, W., Ren, L., … Shao, Z.-M. (2019). Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies. Cancer Cell, 35(3), 428-440.e5. https://doi.org/10.1016/j.ccell.2019.02.001 [CrossRef] [PubMed] [Google Scholar]
- Chinese Anti-Cancer Association Breast Cancer Professional Committee. (2021). Chinese Anti-Cancer Association Breast Cancer Diagnosis and Treatment Guidelines and Specifications (2021 Edition). China Cancer Journal, 31(10), 954–1040. https://doi.org/10.19401/j.cnki.1007-3639.2021.10.013 [Google Scholar]
- Leinonen, R., Sugawara, H., Shumway, M., & on behalf of the International Nucleotide Sequence Database Collaboration. (2011). The Sequence Read Archive. Nucleic Acids Research, 39(suppl_1), D19–D21. https://doi.org/10.1093/nar/gkq1019 [CrossRef] [PubMed] [Google Scholar]
- Krueger, F., James, F., Ewels, P., Afyounian, E., Weinstein, M., Schuster-Boeckler, B., Hulselmans, G., & sclamons. (2023). FelixKrueger/TrimGalore: v0.6.10 - add default decompression path (Version 0.6.10) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7598955 [Google Scholar]
- Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635 [CrossRef] [PubMed] [Google Scholar]
- Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. https://doi.org/10.1186/1471-2105-12-323 [CrossRef] [PubMed] [Google Scholar]
- Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 [CrossRef] [PubMed] [Google Scholar]
- Li, D., Zand, M. S., Dye, T. D., Goniewicz, M. L., Rahman, I., & Xie, Z. (2022). An evaluation of RNA-seq differential analysis methods. PLOS ONE, 17(9), e0264246. https://doi.org/10.1371/journal.pone.0264246 [PubMed] [Google Scholar]
- Hoshida, Y. (2010). Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment. PLoS ONE, 5(11), e15543. https://doi.org/10.1371/journal.pone.0015543 [CrossRef] [PubMed] [Google Scholar]
- Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C., & Koeffler, H. P. (2018). Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Research, 28(11), 1747–1756. https://doi.org/10.1101/gr.239244.118 [CrossRef] [PubMed] [Google Scholar]
- Nusinow, D. P., Szpyt, J., Ghandi, M., Rose, C. M., McDonald, E. R., Kalocsay, M., Jané-Valbuena, J., Gelfand, E., Schweppe, D. K., Jedrychowski, M., Golji, J., Porter, D. A., Rejtar, T., Wang, Y. K., Kryukov, G. V., Stegmeier, F., Erickson, B. K., Garraway, L. A., Sellers, W. R., & Gygi, S. P. (2020). Quantitative Proteomics of the Cancer Cell Line Encyclopedia. Cell, 180(2), 387-402.e16. https://doi.org/10.1016/j.cell.2019.12.023 [CrossRef] [PubMed] [Google Scholar]
- Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., & Yu, G. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2(3), 100141. https://doi.org/10.1016/j.xinn.2021.100141 [CrossRef] [Google Scholar]
- Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y., & Ishiguro-Watanabe, M. (2025). KEGG: biological systems database as a model of the real world. Nucleic Acids Research, 53(D1), D672–D677. https://doi.org/10.1093/nar/gkae909 [CrossRef] [PubMed] [Google Scholar]
- Vitale, C., Marzagalli, M., Scaglione, S., Dondero, A., Bottino, C., & Castriconi, R. (2022). Tumor Microenvironment and Hydrogel-Based 3D Cancer Models for In Vitro Testing Immunotherapies. Cancers, 14(4), Article 4. https://doi.org/10.3390/cancers14041013 [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.